We prove algorithmic results showing that a number of natural parameterized problems are in the restricted-space parameterized classes Para-L and FPT+XL. The first class comprises problems solvable in f(k) n^{O(1)} time using g(k) + O(log n)) bits of space (k is the parameter and n is the input size; f and g are computable functions). The second class comprises problems solvable under the same time bound, but using g(k) log n bits of space instead. Earlier work on these classes has focused largely on their structural aspects and their relationships with various other classes. We complement this with Para-L and FPT+XL algorithms for a restriction of Hitting Set, some graph deletion problems where the target class has an infinite forbidden set characterization, a number of problems parameterized by vertex cover number, and Feedback Vertex Set.
翻译:我们证明算法结果显示,在限制空间参数等级Para-L和FPT+XL中存在一些自然参数化问题。 第一类包括使用 g(k) + O(log n) 位空间(k 是参数, n 是输入大小; f 和 g 是可计算函数)。 第二类包括在同一时间约束下可溶解的问题,但使用 g(k) log n 位空间代替。 这些类别早先的工作主要侧重于结构方面和它们与其他类别的关系。 我们用 Para-L 和 FPT+XL 算法来补充这几个问题, 以限制 Hitting Set, 一些图形删除问题, 其中目标类别有无限的禁止设定特性, 由顶层覆盖编号和回馈 Vertex Set 参数参数的一些问题 。