This study modifies the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) algorithm for multi-modal optimization problems. The enhancements focus on addressing the challenges of multiple global minima, improving the algorithm's ability to maintain diversity and explore complex fitness landscapes. We incorporate niching strategies and dynamic adaptation mechanisms to refine the algorithm's performance in identifying and optimizing multiple global optima. The algorithm generates a population of candidate solutions by sampling from a multivariate normal distribution centered around the current mean vector, with the spread determined by the step size and covariance matrix. Each solution's fitness is evaluated as a weighted sum of its contributions to all global minima, maintaining population diversity and preventing premature convergence. We implemented the algorithm on 8 tunable composite functions for the GECCO 2024 Competition on Benchmarking Niching Methods for Multi-Modal Optimization (MMO), adhering to the competition's benchmarking framework. The results are presenting in many ways such as Peak Ratio, F1 score on various dimensions. They demonstrate the algorithm's robustness and effectiveness in handling both global optimization and MMO- specific challenges, providing a comprehensive solution for complex multi-modal optimization problems.
翻译:暂无翻译