Recently, there has been a growing interest in automating the process of neural architecture design, and the Differentiable Architecture Search (DARTS) method makes the process available within a few GPU days. In particular, a hyper-network called one-shot model is introduced, over which the architecture can be searched continuously with gradient descent. However, the performance of DARTS is often observed to collapse when the number of search epochs becomes large. Meanwhile, lots of "skip-connects" are found in the selected architectures. In this paper, we claim that the cause of the collapse is that there exist cooperation and competition in the bi-level optimization in DARTS, where the architecture parameters and model weights are updated alternatively. Therefore, we propose a simple and effective algorithm, named "DARTS+", to avoid the collapse and improve the original DARTS, by "early stopping" the search procedure when meeting a certain criterion. We demonstrate that the proposed early stopping criterion is effective in avoiding the collapse issue. We also conduct experiments on benchmark datasets and show the effectiveness of our DARTS+ algorithm, where DARTS+ achieves $2.32\%$ test error on CIFAR10, $14.87\%$ on CIFAR100, and $23.7\%$ on ImageNet. We further remark that the idea of "early stopping" is implicitly included in some existing DARTS variants by manually setting a small number of search epochs, while we give an explicit criterion for "early stopping".


翻译:最近,人们日益关注神经结构设计过程的自动化,而不同的建筑搜索(DARTS)方法使这一过程在几GPU日内可以使用。特别是,引入了一个称为一发模型的超网络,在这种网络上,建筑可以不断以坡度下降的方式搜索。然而,当搜索时代的数量大时,DARSS的性能经常观察到崩溃。与此同时,在选定的结构中发现了许多“跳动连接”的问题。在本文中,我们声称崩溃的原因是在DARTS的双层优化中存在合作和竞争,在那里,建筑参数和模型重量可以相互更新。因此,我们建议了一个简单有效的算法,叫做“DARTS+”,以避免崩溃,改进原始的DARTS的性能,在达到某一标准时“及早停止”搜索程序。我们提出的早期停止标准对于避免崩溃问题。我们还进行了基准数据集实验,并展示了我们DARS+的双层优化,在DARTS的双层优化中,“DARTS+ 标准在“DAR+ ” 的低位标准中“停止使用“DRARC2” 。

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Risk-Aware Active Inverse Reinforcement Learning
Arxiv
7+阅读 · 2019年1月8日
Hierarchical Deep Multiagent Reinforcement Learning
Arxiv
8+阅读 · 2018年9月25日
Neural Architecture Optimization
Arxiv
8+阅读 · 2018年9月5日
Arxiv
12+阅读 · 2018年9月5日
Arxiv
3+阅读 · 2018年6月24日
Arxiv
3+阅读 · 2017年10月1日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Risk-Aware Active Inverse Reinforcement Learning
Arxiv
7+阅读 · 2019年1月8日
Hierarchical Deep Multiagent Reinforcement Learning
Arxiv
8+阅读 · 2018年9月25日
Neural Architecture Optimization
Arxiv
8+阅读 · 2018年9月5日
Arxiv
12+阅读 · 2018年9月5日
Arxiv
3+阅读 · 2018年6月24日
Arxiv
3+阅读 · 2017年10月1日
Top
微信扫码咨询专知VIP会员