The statistics and machine learning communities have recently seen a growing interest in classification-based approaches to two-sample testing. The outcome of a classification-based two-sample test remains a rejection decision, which is not always informative since the null hypothesis is seldom strictly true. Therefore, when a test rejects, it would be beneficial to provide an additional quantity serving as a refined measure of distributional difference. In this work, we introduce a framework for the construction of high-probability lower bounds on the total variation distance. These bounds are based on a one-dimensional projection, such as a classification or regression method, and can be interpreted as the minimal fraction of samples pointing towards a distributional difference. We further derive asymptotic power and detection rates of two proposed estimators and discuss potential uses through an application to a reanalysis climate dataset


翻译:最近,统计和机器学习界对基于分类的两样测试方法的兴趣日益增长,基于分类的两样测试的结果仍然是拒绝决定,由于无效假设很少严格无误,这种拒绝并非总的信息性决定,因此,当试验拒绝时,最好提供额外数量,作为改善分布差异的衡量标准。在这项工作中,我们引入一个框架,用于构建高概率低限总变差距离的全概率标准。这些界限以一维预测为基础,如分类或回归法,可被解释为指分布差异的样本的最小比例。我们进一步得出两个拟议估计数字的零反应力和检测率,并通过对气候数据集进行再分析来讨论潜在用途。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Distance covariance for random fields
Arxiv
0+阅读 · 2021年7月22日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员