Generative Adversarial Networks (GAN) are a powerful methodology and can be used for unsupervised anomaly detection, where current techniques have limitations such as the accurate detection of anomalies near the tail of a distribution. GANs generally do not guarantee the existence of a probability density and are susceptible to mode collapse, while few GANs use likelihood to reduce mode collapse. In this paper, we create a GAN-based tail formation model for anomaly detection, the Tail of distribution GAN (TailGAN), to generate samples on the tail of the data distribution and detect anomalies near the support boundary. Using TailGAN, we leverage GANs for anomaly detection and use maximum entropy regularization. Using GANs that learn the probability of the underlying distribution has advantages in improving the anomaly detection methodology by allowing us to devise a generator for boundary samples, and use this model to characterize anomalies. TailGAN addresses supports with disjoint components and achieves competitive performance on images. We evaluate TailGAN for identifying Out-of-Distribution (OoD) data and its performance evaluated on MNIST, CIFAR-10, Baggage X-Ray, and OoD data shows competitiveness compared to methods from the literature.


翻译:GAN通常不能保证概率密度的存在,而且容易发生模式崩溃。在本文中,我们创建了一个基于GAN的尾部形成模型,用于检测异常现象、配送GAN的尾部(TailGAN),以便在数据分布的尾部上采集样本并探测支持边界附近的异常现象。我们利用TaYGAN,利用GAN进行异常现象检测,并使用最大灵敏度规范化。利用GAN了解潜在分布概率的GAN,在改进异常现象检测方法方面有优势,因为GAN能够设计出一个边界样品的生成器,并使用这一模型对异常情况进行定性。TaiteGAN地址支持不连接的组件,并在图像上取得竞争性性能。我们评估TAYGAN,以识别数据流出(OoD)数据及其在MNIST、CIFAR-10、Bagage X-RAy 和OOD 比较文献的竞争力数据方法。

0
下载
关闭预览

相关内容

专知会员服务
32+阅读 · 2021年9月16日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
109+阅读 · 2020年3月12日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
202+阅读 · 2019年9月30日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
4+阅读 · 2019年5月1日
Arxiv
8+阅读 · 2019年2月15日
Arxiv
4+阅读 · 2018年5月21日
Arxiv
5+阅读 · 2018年5月1日
Arxiv
10+阅读 · 2018年3月23日
VIP会员
相关VIP内容
相关资讯
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
4+阅读 · 2019年5月1日
Arxiv
8+阅读 · 2019年2月15日
Arxiv
4+阅读 · 2018年5月21日
Arxiv
5+阅读 · 2018年5月1日
Arxiv
10+阅读 · 2018年3月23日
Top
微信扫码咨询专知VIP会员