LibRec 精选:CCF TPCI 的推荐系统专刊征稿

2019 年 1 月 12 日 LibRec智能推荐

LibRec 精选

LibRec智能推荐 第 23 期(至2019.1.12),更新 13 篇精彩讨论内容。


愿生活如诗,过成你喜欢的样子。你好,2019。 


1

【征稿】CCF Transactions on Pervasive Computing and Interaction Special Issue on Recommender Systems



2

【会议】UMAP 2019论文截稿时间:

Abstract: 2019年1月25日

Paper: 2019年2月1日

3

【博客】AI在电子商务领域的8个真实应用(https://bit.ly/2uNHJLS):

+ 个性化商品推荐

+ 打击虚假评论

+ 库存管理和销售预测

+ 自动客服和购物机器人

+ AI驱动的客户关系管理(CRM)系统

+ 视觉搜索:以图搜商品

+ 语音搜索

4

【招聘】TU Delf 在推荐系统领域的教职职位:https://www.academictransfer.com/nl/51812/asstassoc-professor-in-recommender-systems/


5

【总结】ACM RecSys 2018 参会总结:https://tech.iheart.com/a-survey-of-acm-recsys-2018-8679ed021904

6

一个推荐失败的案例






1. Loss Aversion in Recommender Systems: Utilizing Negative User Preference to Improve Recommendation Quality

Bibek Paudel, Sandro Luck, Abraham Bernstein

https://arxiv.org/abs/1812.11422v1

Negative user preference is an important context that is not sufficiently utilized by many existing recommender systems. This context is especially useful in scenarios where the cost of negative items is high for the users. We build upon existing machine-learning model to incorporate the contextual information provided by negative user preference.


2. Deep Item-based Collaborative Filtering for Sparse Implicit Feedback

Daniel A. Galron, Yuri M. Brovman, Jin Chung, Michal Wieja, Paul Wang

https://arxiv.org/abs/1812.10546v1

Techniques such as item-based collaborative filtering are used to model users' behavioral interactions with items and make recommendations from items that have similar behavioral patterns. We propose an objective function that optimizes a similarity measure between binary implicit feedback vectors between two items. Finally, we discuss the results of an A/B test that show marked improvement of the proposed technique over eBay's existing collaborative filtering recommender system.


3. Knowledge Representation Learning: A Quantitative Review

Yankai Lin, Xu Han, Ruobing Xie, Zhiyuan Liu, Maosong Sun

https://arxiv.org/abs/1812.10901v1

Knowledge representation learning (KRL) aims to represent entities and relations in knowledge graph in low-dimensional semantic space, which have been widely used in massive knowledge-driven tasks. Afterwards, we extensively conduct and quantitative comparison and analysis of several typical KRL methods on three evaluation tasks of knowledge acquisition including knowledge graph completion, triple classification, and relation extraction. We also review the real-world applications of KRL, such as language modeling, question answering, information retrieval, and recommender systems.


4. Towards Finding Non-obvious Papers: An Analysis of Citation Recommender Systems

Haofeng Jia, Erik Saule

https://arxiv.org/abs/1812.11252v1

Our analysis shows the degrees of cited papers in the subgraph induced by the citations of a paper, called projection graph, follow a power law distribution. Existing popular methods are only good at finding the long tail papers, the ones that are highly connected to others. Results show that different methods are finding cited papers with widely different properties.


5. On hybrid modular recommendation systems for video streaming

Evripidis Tzamousis, Maria Papadopouli

https://arxiv.org/abs/1901.01418v1

The recommendation systems aim to improve the user engagement by recommending appropriate personalized content to users, exploiting information about their preferences. The enabler incorporates a variety of recommendation algorithms that span from collaborative filtering and content-based techniques to ones based on neural networks. A pilot web-based recommendation system was developed and tested in the production environment of a large telecom operator in Greece.


6. A Neural Network Based Explainable Recommender System

Jionghao Lin, Yiren Liu

https://arxiv.org/abs/1812.11740v1

Recommendation system could help the companies to persuade users to visit or consume at a particular place, which was based on many traditional methods such as the set of collaborative filtering algorithms. This paper proposed an integrated neural network based model which integrates rating scores prediction and explainable words generation. Based on the experimental results, this model presented lower RMSE compared with traditional methods, and generate the explanation of recommendation to convince customers to visit the recommended place.


7. Pseudo-Implicit Feedback for Alleviating Data Sparsity in Top-K Recommendation

Yun He, Haochen Chen, Ziwei Zhu, James Caverlee

https://arxiv.org/abs/1901.00597v1

We propose PsiRec, a novel user preference propagation recommender that incorporates pseudo-implicit feedback for enriching the original sparse implicit feedback dataset. Three of the unique characteristics of PsiRec are: (i) it views user-item interactions as a bipartite graph and models pseudo-implicit feedback from this perspective; (ii) its random walks-based approach extracts graph structure information from this bipartite graph, toward estimating pseudo-implicit feedback; and (iii) it adopts a Skip-gram inspired measure of confidence in pseudo-implicit feedback that captures the pointwise mutual information between users and items. This pseudo-implicit feedback is ultimately incorporated into a new latent factor model to estimate user preference in cases of extreme sparsity.




登录查看更多
4

相关内容

推荐系统,是指根据用户的习惯、偏好或兴趣,从不断到来的大规模信息中识别满足用户兴趣的信息的过程。推荐推荐任务中的信息往往称为物品(Item)。根据具体应用背景的不同,这些物品可以是新闻、电影、音乐、广告、商品等各种对象。推荐系统利用电子商务网站向客户提供商品信息和建议,帮助用户决定应该购买什么产品,模拟销售人员帮助客户完成购买过程。个性化推荐是根据用户的兴趣特点和购买行为,向用户推荐用户感兴趣的信息和商品。随着电子商务规模的不断扩大,商品个数和种类快速增长,顾客需要花费大量的时间才能找到自己想买的商品。这种浏览大量无关的信息和产品过程无疑会使淹没在信息过载问题中的消费者不断流失。为了解决这些问题,个性化推荐系统应运而生。个性化推荐系统是建立在海量数据挖掘基础上的一种高级商务智能平台,以帮助电子商务网站为其顾客购物提供完全个性化的决策支持和信息服务。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
近期必读的5篇顶会WWW2020【推荐系统】相关论文-Part2
专知会员服务
68+阅读 · 2020年4月7日
近期必读的6篇AI顶会WWW2020【推荐系统】相关论文
专知会员服务
56+阅读 · 2020年2月25日
可解释推荐:综述与新视角
专知会员服务
108+阅读 · 2019年10月13日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
LibRec 精选:如何评估交互式推荐系统?
LibRec智能推荐
8+阅读 · 2019年5月5日
LibRec 精选:近期15篇推荐系统论文
LibRec智能推荐
5+阅读 · 2019年3月5日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
LibRec 精选:推荐系统9个必备数据集
LibRec智能推荐
6+阅读 · 2018年3月7日
LibRec 每周精选:10篇每个人都应该读的RecSys文章
LibRec智能推荐
5+阅读 · 2018年1月1日
Arxiv
19+阅读 · 2019年11月23日
Learning Recommender Systems from Multi-Behavior Data
Arxiv
6+阅读 · 2018年3月28日
Arxiv
9+阅读 · 2018年3月23日
Arxiv
8+阅读 · 2018年2月23日
Arxiv
6+阅读 · 2018年2月7日
Arxiv
5+阅读 · 2017年11月13日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
LibRec 精选:如何评估交互式推荐系统?
LibRec智能推荐
8+阅读 · 2019年5月5日
LibRec 精选:近期15篇推荐系统论文
LibRec智能推荐
5+阅读 · 2019年3月5日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
LibRec 精选:推荐系统9个必备数据集
LibRec智能推荐
6+阅读 · 2018年3月7日
LibRec 每周精选:10篇每个人都应该读的RecSys文章
LibRec智能推荐
5+阅读 · 2018年1月1日
相关论文
Arxiv
19+阅读 · 2019年11月23日
Learning Recommender Systems from Multi-Behavior Data
Arxiv
6+阅读 · 2018年3月28日
Arxiv
9+阅读 · 2018年3月23日
Arxiv
8+阅读 · 2018年2月23日
Arxiv
6+阅读 · 2018年2月7日
Arxiv
5+阅读 · 2017年11月13日
Top
微信扫码咨询专知VIP会员