内容简介这本书的前四章集中在足够的理论和基础,给你,实践者,为这本书剩下的部分一个工作的基础。最后五章将从这些概念出发,带领您通过一系列使用DL4J进行深度学习的实践路径。
在本书中,我们交替使用DL4J和Deeplearning4j这两个名称。这两个术语都指的是Deeplearning4j库中的工具套件。
我们以这种方式设计这本书,因为我们觉得有必要让这本书既包含足够的理论,又足够的实际,以构建生产级的深度学习工作流。我们认为,这种混合方法的书的覆盖面适合这个空间。
第一章回顾了机器学习的一般概念,特别是深度学习,让读者快速了解了解本书其余部分所需要的基础知识。我们增加了这一章,因为许多初学者可以使用这些概念的复习或入门,我们想让尽可能多的读者可以访问这个项目。
第2章以第1章的概念为基础,并为您提供了神经网络的基础。它在很大程度上是神经网络理论的一个章节,但是我们的目标是用一种可访问的方式来呈现信息。
第三章在前两章的基础上更进一步,让你了解网络是如何从神经网络的基本原理发展而来的。
第四章介绍了深层网络的四种主要架构,并为本书的其余部分提供了基础。
在第5章中,我们将使用前半部分中的技术,带您浏览一些Java代码示例。
第6章和第7章讨论了调优一般神经网络的基本原理,然后讨论了如何调优深度网络的特定架构。这些章节是平台无关的,将适用于任何深度学习库的实践。
第8章是对矢量化技术和如何使用DataVec (DL4J的ETL和矢量化工作流工具)的基础知识的回顾。
第9章总结了该书的主体部分,回顾了如何在Spark和Hadoop上本地使用DL4J,并举例说明了可以在自己的Spark集群上运行的三个实际示例。
这本书有许多附录章节的主题是相关的,但不适合直接放在主要章节。主题包括:
部分截图: