This paper exploits the multi-antenna technique to enhance the covert communication performance in a relay system, where a source S conducts covert communication with a destination D via a relay R, subjecting to the detections of transmissions in the two hops from a single-antenna warden W. To demonstrate the performance gain from adopting the multi-antenna technique, we first consider the scenario when S, R and D all adopt single antenna, and apply hypothesis testing and statistics theories to develop a theoretical framework for the covert performance modeling in terms of detection error probability (DEP) and covert throughput. We then consider the scenario when S, R and D all adopt multiple antennas, and apply the hypothesis testing, statistics and matrix theories to develop corresponding theoretical framework for performance modeling. We further explore the optimal designs of the target rate and transmit power for covert throughput maximization under above both scenarios, subjecting to the constraints of covertness, reliability and transmit power. To solve the optimization problems, we employ Karushi-Kuhn-Tucker (KKT) conditions method in the single antenna scenario and a search algorithm in the multi-antenna scenario. Finally, we provide extensive numerical results to illustrate how the multi-antenna technique can enhance the covert performance in two-hop relay systems.
翻译:暂无翻译