General elliptic equations with spatially discontinuous diffusion coefficients may be used as a simplified model for subsurface flow in heterogeneous or fractured porous media. In such a model, data sparsity and measurement errors are often taken into account by a randomization of the diffusion coefficient of the elliptic equation which reveals the necessity of the construction of flexible, spatially discontinuous random fields. Subordinated Gaussian random fields are random functions on higher dimensional parameter domains with discontinuous sample paths and great distributional flexibility. In the present work, we consider a random elliptic partial differential equation (PDE) where the discontinuous subordinated Gaussian random fields occur in the diffusion coefficient. Problem specific multilevel Monte Carlo (MLMC) Finite Element methods are constructed to approximate the mean of the solution to the random elliptic PDE. We prove a-priori convergence of a standard MLMC estimator and a modified MLMC - Control Variate estimator and validate our results in various numerical examples.


翻译:具有空间不连续扩散系数的普通椭圆方程式可以用作多元或裂开多孔介质中地表下流的简化模型。在这种模型中,数据宽度和测量错误往往通过对椭圆方程式扩散系数的随机化而得到考虑,这种随机化表明有必要构建灵活、空间不连续随机字段。从子高斯随机字段是高维参数域的随机函数,有不连续的样本路径和很大的分布灵活性。在目前的工作中,我们考虑的是随机的椭圆部分偏差方程式(PDE),在这个方程式中,不连续的从属高斯随机字段出现在扩散系数中。问题特定的多层次蒙特卡洛(MLMC)固定元素方法的构建接近随机椭圆方块解决方案的平均值。我们证明标准 MLMC 估计符和修改的 MLMC - 控制 Variate 估量器的优先组合,并在各种数字实例中验证我们的结果。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
从逻辑回归到最大熵模型
夕小瑶的卖萌屋
4+阅读 · 2017年7月11日
VIP会员
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
从逻辑回归到最大熵模型
夕小瑶的卖萌屋
4+阅读 · 2017年7月11日
Top
微信扫码咨询专知VIP会员