In this work, we present and analyse a system of coupled partial differential equations, which models tumour growth under the influence of subdiffusion, mechanical effects, nutrient supply, and chemotherapy. The subdiffusion of the system is modelled by a time fractional derivative in the equation governing the volume fraction of the tumour cells. The mass densities of the nutrients and the chemotherapeutic agents are modelled by reaction diffusion equations. We prove the existence and uniqueness of a weak solution to the model via the Faedo--Galerkin method and the application of appropriate compactness theorems. Lastly, we propose a fully discretised system and illustrate the effects of the fractional derivative and the influence of the fractional parameter in numerical examples.
翻译:在这项工作中,我们提出并分析一个结合的局部差异方程式系统,该方程式在亚扩散、机械效应、营养供应和化疗的影响下模拟肿瘤增长。该系统的亚扩散模型是肿瘤细胞体积分数方程式中的时间分数衍生物。营养物质和乳胶化剂的质量密度以反应扩散方程式为模型。我们通过Faedo-Galerkin法和适用适当的紧凑性词句,证明模型的微弱解决方案的存在和独特性。最后,我们提出一个完全分离的系统,说明分数衍生物的影响和分数参数在数字示例中的影响。