This paper tackles the problem of downlink transmission in massive multiple-input multiple-output(MIMO) systems where the equipments (UEs) exhibit high spatial correlation and the channel estimation is limited by strong pilot contamination. Signal subspace separation among the UEs is, in fact, rarely realized in practice and is generally beyond the control of the network designer (as it is dictated by the physical scattering environment). In this context, we propose a novel statistical beamforming technique, referred to asMIMO covariance shaping, that exploits multiple antennas at the UEs and leverages the realistic non-Kronecker structure of massive MIMO channels to target a suitable shaping of the channel statistics performed at the UE-side. To optimize the covariance shaping strategies, we propose a low-complexity block coordinate descent algorithm that is proved to converge to a limit point of the original nonconvex problem. For the two-UE case, this is shown to converge to a stationary point of the original problem. Numerical results illustrate the sum-rate performance gains of the proposed method with respect to reference scenarios employing the multiple antennas at the UE for spatial multiplexing.
翻译:本文解决了大规模多投入多输出(MIMO)系统中的下行传输问题,在这些系统中,设备(UES)显示出高度的空间相关性,频道估计受到强烈的试点污染的限制。UES之间的信号子空间分离实际上实际上很少在实践中实现,而且一般是网络设计者无法控制的(因为实际散射环境决定的)。在此情况下,我们建议一种新型的统计波束成像技术,称为IMIMO共变形法,在UES上利用多天线,并利用大型MIMO频道的现实的非克朗结构,瞄准在UE-Side上进行的频道统计的合适形状。为了优化共变制战略,我们建议采用低兼容性块来协调下行算法,这种算法被证明与原始非电离子问题的一个极限点趋同。在UE案中,这与最初问题的一个固定点相趋同。数字结果说明了拟议方法在参考情景方面在使用多个空间天线进行多星的参考情景方面所取得的总体性绩效。