The use of low-resolution digital-to-analog and analog-to-digital converters (DACs and ADCs) significantly benefits energy efficiency (EE) at the cost of high quantization noise in implementing massive multiple-input multiple-output (MIMO) systems. For maximizing EE in quantized downlink massive MIMO systems, this paper formulates a precoding optimization problem with antenna selection; yet acquiring the optimal joint precoding and antenna selection solution is challenging due to the intricate EE characterization. To resolve this challenge, we decompose the problem into precoding direction and power optimization problems. For precoding direction, we characterize the first-order optimality condition, which entails the effects of quantization distortion and antenna selection. For precoding power, we obtain the optimum solution using a gradient descent algorithm to maximize EE for given precoding direction. We cast the derived condition as a functional eigenvalue problem, wherein finding the principal eigenvector attains the best local optimal point. To this end, we propose generalized power iteration based algorithm. Alternating these two methods, our algorithm identifies a joint solution of the active antenna set and the precoding direction and power. In simulations, the proposed methods provide considerable performance gains. Our results suggest that a few-bit DACs are sufficient for achieving high EE in massive MIMO systems.
翻译:使用低分辨率数字到模拟转换器和模拟到数字转换器(DACs和ADCs),以实施大规模多投入多输出(MIMO)系统时的高定量噪音为代价,大大有利于能源效率。为了在大规模多投入多输出(MIMO)系统中实现EE最大化,本文件用天线选择的分解下链接大规模MIIMO系统制定了一个预编码优化问题;然而,由于EEE特性错综复杂,获得最佳的联合预编码和天线选择解决方案具有挑战性。为了解决这一挑战,我们将问题分解为预先编码的方向和权力优化问题。对于预先编码的方向,我们将第一阶的最佳状态描述为EEEE,这涉及到四阶扭曲和天线选择的效果。对于预先编码,我们利用梯位下降算算法获得最佳解决方案,以尽量扩大EEE值选择。我们把由此产生的条件作为一个功能性电子价值问题,找到主要的Egen值达到最佳的当地最佳点。对于这个目的,我们建议基于通用的动力前导算法,我们提出了基于电源的最优化法。对于前导的精度优化方法。对于前导方法来说,我们提出了一系列的一级最佳方法,我们提出了一种模拟计算方法。在进行大量的模型中可以确定一种最佳方法。