We aim to demonstrate in experiments that our cost sensitive PEGASOS SVM (without synthetic majority oversampling/under sampling (SMOTE) ) achieves good performance on imbalanced data sets with a Majority to Minority Ratio ranging from 8.6:1 to 130:1. Although many resort to SMOTE methods, we aim for a less computationally intensive method. We evaluate the performance by examining the learning curves. These curves diagnose whether we overfit or underfit or we choose over-representive or under representative training/test data. We will also examine the effect of varying the hyperparameters via validation curves. We compare our PEGASOS Cost-Sensitive SVM's results on three of the datasets Ding analyzed using his LINEAR SVM DECIDL method. He obtained an ROC-AUC of .5 in one dataset. We consider that dataset the most promising use of kernel Support Vector Machine. Our work will extend the work of Ding by incorporating kernels into Support Vector Machine. We will use Python rather than MatLab as python has dictionaries for storing mixed data types during multi-parameter cross-validation.


翻译:我们的目标是在实验中证明,我们的成本敏感的PEGASOS SVM(没有合成多数过度抽样/正在取样(SMOTE))在不平衡的数据集上取得了良好的表现,其多数比例与少数比例介于8.6:1至130:1之间。虽然我们有许多人采用SMOTE方法,但我们的目标是采用一种不那么计算密集的方法。我们通过研究学习曲线来评估性能。这些曲线判断我们是否过分适合或不适宜,或者我们是否选择过份或有代表性的培训/测试数据。我们还将通过验证曲线来研究不同超分参数的效果。我们用他的LINEAR SVM DECIDL方法比较了我们PEASOS对成本敏感的SVM在三个数据集中分析的结果。他在一个数据集中获得了一个0.5的ROC-AUC。我们认为,数据集最有前途地使用了内核支持矢的矢量机器。我们的工作将通过将内核纳入支持矢量机器而扩大工作的范围。我们将使用Pythons-敏感度SVM的SVM结果,而不是在多盘存储期间将Pyth-lavical-traction数据作为跨类型。</s>

0
下载
关闭预览

相关内容

在机器学习中,支持向量机(SVM,也称为支持向量网络)是带有相关学习算法的监督学习模型,该算法分析用于分类和回归分析的数据。支持向量机(SVM)算法是一种流行的机器学习工具,可为分类和回归问题提供解决方案。给定一组训练示例,每个训练示例都标记为属于两个类别中的一个或另一个,则SVM训练算法会构建一个模型,该模型将新示例分配给一个类别或另一个类别,使其成为非概率二进制线性分类器(尽管方法存在诸如Platt缩放的问题,以便在概率分类设置中使用SVM)。SVM模型是将示例表示为空间中的点,并进行了映射,以使各个类别的示例被尽可能宽的明显间隙分开。然后,将新示例映射到相同的空间,并根据它们落入的间隙的侧面来预测属于一个类别。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
12+阅读 · 2023年2月7日
Arxiv
19+阅读 · 2022年7月29日
Conditional Prompt Learning for Vision-Language Models
Arxiv
13+阅读 · 2022年3月10日
A Survey on Data Augmentation for Text Classification
Meta-Transfer Learning for Zero-Shot Super-Resolution
Arxiv
43+阅读 · 2020年2月27日
Arxiv
45+阅读 · 2019年12月20日
Arxiv
12+阅读 · 2019年3月14日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员