In many scientific applications the aim is to infer a function which is smooth in some areas, but rough or even discontinuous in other areas of its domain. Such spatially inhomogeneous functions can be modelled in Besov spaces with suitable integrability parameters. In this work we study adaptive Bayesian inference over Besov spaces, in the white noise model from the point of view of rates of contraction, using $p$-exponential priors, which range between Laplace and Gaussian and possess regularity and scaling hyper-parameters. To achieve adaptation, we employ empirical and hierarchical Bayes approaches for tuning these hyper-parameters. Our results show that, while Gaussian priors can attain the minimax rate only in Besov spaces of spatially homogeneous functions, Laplace priors attain the minimax or nearly the minimax rate in both Besov spaces of spatially homogeneous functions and Besov spaces permitting spatial inhomogeneities.
翻译:在许多科学应用中,目标是推断出在某些地区是平滑的功能,但在其领域的其他领域是粗糙的甚至不连续的。这种空间不相容的功能可以在贝索夫空间进行模拟,具有适当的兼容性参数。在这项工作中,我们从收缩率的角度,在白噪声模型中研究贝索夫空间的贝索夫推导能力,使用耗尽前科,在拉贝和高山之间,具有规律性和缩放超参数。为了实现适应,我们采用了实验性和等级性贝斯贝斯方法来调整这些超参数。我们的结果显示,虽然戈斯前科只能在空间同质功能的贝索夫空间达到微速率,但拉佩特前科在空间同质功能的贝索夫空间和允许空间不相容的贝索夫空间都达到微速率或接近微微速率。