In this paper, we introduce ProtoPShare, a self-explained method that incorporates the paradigm of prototypical parts to explain its predictions. The main novelty of the ProtoPShare is its ability to efficiently share prototypical parts between the classes thanks to our data-dependent merge-pruning. Moreover, the prototypes are more consistent and the model is more robust to image perturbations than the state of the art method ProtoPNet. We verify our findings on two datasets, the CUB-200-2011 and the Stanford Cars.
翻译:在本文中,我们引入了“ProtoPshare ” ( ProtoPshare ) ( ProtoPshare ) ( ProtoPshare ) ( ProtoPshare ) ( ProtoPshare ) ( ProtoPshare ) ( ProtoPshare ) ( ProtoPshare ) ( ProtoPshare ) ( ProtoPre ) ), 这是一种自我解释的方法, 结合了原型部分的范式来解释其预测。 “ ProtoPshare ” ( ProtoPre ) 的主要新颖之处是, 由于我们依靠数据的合并运行, 能够在各类之间有效分享原型部分。 此外, 原型更加一致, 并且模型比“ ProtoPNet ” ( ProtoPNet) ( ) ( CUB- 200- 2011) 和“ Stanford Cars ) ) ( ) 。 我们验证了我们对两个数据集的调查结果。