In recent years, crowd counting has become an important issue in computer vision. In most methods, the density maps are generated by convolving with a Gaussian kernel from the ground-truth dot maps which are marked around the center of human heads. Due to the fixed geometric structures in CNNs and indistinct head-scale information, the head features are obtained incompletely. Deformable convolution is proposed to exploit the scale-adaptive capabilities for CNN features in the heads. By learning the coordinate offsets of the sampling points, it is tractable to improve the ability to adjust the receptive field. However, the heads are not uniformly covered by the sampling points in the deformable convolution, resulting in loss of head information. To handle the non-uniformed sampling, an improved Normed-Deformable Convolution (\textit{i.e.,}NDConv) implemented by Normed-Deformable loss (\textit{i.e.,}NDloss) is proposed in this paper. The offsets of the sampling points which are constrained by NDloss tend to be more even. Then, the features in the heads are obtained more completely, leading to better performance. Especially, the proposed NDConv is a light-weight module which shares similar computation burden with Deformable Convolution. In the extensive experiments, our method outperforms state-of-the-art methods on ShanghaiTech A, ShanghaiTech B, UCF\_QNRF, and UCF\_CC\_50 dataset, achieving 61.4, 7.8, 91.2, and 167.2 MAE, respectively. The code is available at https://github.com/bingshuangzhuzi/NDConv


翻译:近几年来, 人群计数已成为计算机视觉中的一个重要问题。 在大多数方法中, 密度地图是由来自位于人头中心周围的地光点图上的高斯内核结合而生成的。 由于CNN的固定几何结构以及头级信息模糊不清, 头部特征是不完整的。 提议变形变异以利用CNN头部功能的缩放能力。 通过了解取样点的坐标偏差, 可以提高调控接收场的能力。 然而, 无法变形的混凝土图的取样点并不统一覆盖在云层图中, 导致头部信息丢失。 要处理非整形的取样, 改进了Normed- 变形变形( textit{i.e.}NDConvl) 的功能。 本文中提议了可变形损失(\ textitilit{i.e. dechndrlossl) 的缩略图 。 缩略图的缩略图因NDlevorational durational road而减弱, 的缩缩略图则则则则则在随后更接近。 。 缩缩化方法中建议了。 。

0
下载
关闭预览

相关内容

在数学(特别是功能分析)中,卷积是对两个函数(f和g)的数学运算,产生三个函数,表示第一个函数的形状如何被另一个函数修改。 卷积一词既指结果函数,又指计算结果的过程。 它定义为两个函数的乘积在一个函数反转和移位后的积分。 并针对所有shift值评估积分,从而生成卷积函数。
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Simplifying Graph Convolutional Networks
Arxiv
12+阅读 · 2019年2月19日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员