项目名称: 直径可控一维低熔点金属Sn、Bi、In、Zn纳米线阵列的构建及储锂过程机理研究

项目编号: No.51201117

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 金属材料学科

项目作者: 方东

作者单位: 武汉纺织大学

项目金额: 25万元

中文摘要: 金属作为锂离子电池负极有高的比容量,是化学电源领域的前沿方向之一,但 存在充放电体积膨胀引起的粉化、循环性能差等问题。电极纳米化及包覆为抑制膨胀的有效 途径。以多孔材料为模板,采用物理液压法大面积合成不同直径的低熔点金属Sn、Bi、In、 Zn 纳米线阵列(10-200nm)。以金属纳米线阵列为工作电极组装成锂离子模拟电池,检测该 不同直径的金属纳米线做为锂离子电池电极材料的电化学性能及不同充、放电深度下纳米 线的形貌、晶型、元素组成。进一步以制备得到的纳米线阵列为模板,利用化学原位置换法 或水热碳化法对金属纳米线阵列的表面进行Cu 或C 包覆,考察包覆对金属纳米线阵列因充 放电过程导致的体积膨胀及导电性变化的影响。建立金属电极储锂容量与纳米线尺寸的关 系;充、放电状态与材料结构、形貌的关系。旨在为金属作为锂电材料的研究提供新思路, 理论依据和技术原理,为薄膜微电池电极的设计给予指导。

中文关键词: 物理液压法;纳米线;锂离子电池;机理;

英文摘要: Metals can be utilized as anode of lithium ion battery, and enables the anode has high specific capacity. Metallic anode is a forefront area for chemical power sources. However, the cycling performance of the materials of metallic anode was inferior because of their volume expansion and pulverization during the charge-discharge process. Nanosizing and coating the metallic anode are efficient methods to supress the expansion of the anode. For example, such a method is by using nanoporous alumina, titania, and zirconia nanotubes prepared by anode oxidation in templates. Nanowire arrays of Sn, Bi, In, Zn of diameter between 10nm and 200 nm can be synthesized using physical hydraulic method. The proposed research will prepare the Sn, Bi, In, Zn nanowire arrays as the working electrode in a argon-filled glove box. Metal crystal structures of the arrays will be analyzed. The electrochemical performances and charge-discharge depth of the metal nanowire arrays of different diameter will be throughly tested.The as-prepared nanowires will serve as templates to coat Cu or C on their surface by using chemical in-situ replacement method or hydrothermal method. The volume expansion and conductivity of the nanowires after coating Cu or C will be investigated during charging and discharging processes.The proposed research will

英文关键词: physical hydraulic method;nanowire array;lithium battery;mechanism;

成为VIP会员查看完整内容
0

相关内容

【广东工业大学蔡瑞初教授】因果关系发现进展及其应用
【CVPR2022】 Dropout在图像超分任务中的重煥新生
专知会员服务
18+阅读 · 2022年3月5日
AAAI 2022 | SASA: 重新思考三维物体检测中的点云采样问题
专知会员服务
23+阅读 · 2022年3月1日
绿色制造标准化白皮书(2021版),48页pdf
专知会员服务
32+阅读 · 2021年11月10日
专知会员服务
29+阅读 · 2021年8月16日
【CVPR2021】细粒度多标签分类
专知会员服务
60+阅读 · 2021年3月8日
全固态电池领域,小公司的加速度——恩力动力
创业邦杂志
0+阅读 · 2022年2月25日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
28+阅读 · 2021年10月1日
Arxiv
19+阅读 · 2021年6月15日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关主题
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员