As the third generation of neural networks, spiking neural networks (SNNs) are dedicated to exploring more insightful neural mechanisms to achieve near-biological intelligence. Intuitively, biomimetic mechanisms are crucial to understanding and improving SNNs. For example, the associative long-term potentiation (ALTP) phenomenon suggests that in addition to learning mechanisms between neurons, there are associative effects within neurons. However, most existing methods only focus on the former and lack exploration of the internal association effects. In this paper, we propose a novel Adaptive Internal Association~(AIA) neuron model to establish previously ignored influences within neurons. Consistent with the ALTP phenomenon, the AIA neuron model is adaptive to input stimuli, and internal associative learning occurs only when both dendrites are stimulated at the same time. In addition, we employ weighted weights to measure internal associations and introduce intermediate caches to reduce the volatility of associations. Extensive experiments on prevailing neuromorphic datasets show that the proposed method can potentiate or depress the firing of spikes more specifically, resulting in better performance with fewer spikes. It is worth noting that without adding any parameters at inference, the AIA model achieves state-of-the-art performance on DVS-CIFAR10~(83.9\%) and N-CARS~(95.64\%) datasets.
翻译:作为第三代神经网络的第三代神经网络,神经神经网络(SNNS)致力于探索更深刻的神经机制,以获得近生物智能。直观地说,生物模拟机制对于理解和改进SNNS至关重要。例如,长期关联性长期强力(ALTP)现象表明,除了神经元之间的学习机制外,神经元中还存在关联效应。然而,大多数现有方法仅侧重于前者,缺乏对内部关联效应的探索。在本文中,我们提议了一个新的适应性内部协会-(AIA)神经模型,以建立先前被忽视的神经内影响。与ALTP现象一致,AIA神经模型适应性能对输入刺激性能具有适应性,内部关联性学习只有在两种变异性同时被刺激时才会发生。此外,我们使用加权权重来衡量内部关联,并引入中间缓存以降低关联的波动性。关于当前神经变形数据集的广泛实验显示,拟议的方法可以加强或抑制神经变形神经神经神经系统(AI)神经系统(AI)神经元协会(AI)神经协会(AI)神经变)神经系统(AI)神经变变形神经变变变形神经系统(AI)神经变形神经系统(AI)神经协会(AI)神经协会(AI)神经变形神经协会(AI)神经协会(AI)神经协会)神经协会(A(AI)神经协会)神经变动)神经变动)神经变动)神经变动模型(A(A(A(A)神经变动)神经变动)神经变更值得更值得更明显更值得更明显更明显更明显,在更明显更明显,在更明显,在任何更明显,在任何更明显,导致,在任何性变的参数中产生更低的状态中,在任何性能中产生更低。</s>