Knowledge base question answering (KBQA)is an important task in Natural Language Processing. Existing approaches face significant challenges including complex question understanding, necessity for reasoning, and lack of large end-to-end training datasets. In this work, we propose Neuro-Symbolic Question Answering (NSQA), a modular KBQA system, that leverages (1) Abstract Meaning Representation (AMR) parses for task-independent question understanding; (2) a simple yet effective graph transformation approach to convert AMR parses into candidate logical queries that are aligned to the KB; (3) a pipeline-based approach which integrates multiple, reusable modules that are trained specifically for their individual tasks (semantic parser, entity andrelationship linkers, and neuro-symbolic reasoner) and do not require end-to-end training data. NSQA achieves state-of-the-art performance on two prominent KBQA datasets based on DBpedia (QALD-9 and LC-QuAD1.0). Furthermore, our analysis emphasizes that AMR is a powerful tool for KBQA systems.
翻译:现有方法面临重大挑战,包括复杂的问题理解、推理的必要性和缺乏大型端对端培训数据集。在这项工作中,我们提议采用模块式KBQA系统Neuro-Symboli问答(NSQA),该系统利用模块式KBQA系统(1) 抽象表示(AMR)分析来了解任务独立的问题;(2) 简单而有效的图形转换方法,将离子体分析器转换成候选人的符合KB的逻辑查询;(3) 以管道为基础的方法,将专门为其个别任务培训的多个可重复使用的模块(语法分析器、实体和关系连接器以及神经共振动理由)合并在一起,不需要端对端培训数据。 NSQA在基于DBpedia的两个突出的KBQA数据集(QALD-9和LC-QUAD1.0)上取得了最新业绩。 此外,我们的分析强调,离子系统是KBA系统的一个强大工具。