Reconstructing high-fidelity 3D facial texture from a single image is a challenging task since the lack of complete face information and the domain gap between the 3D face and 2D image. The most recent works tackle facial texture reconstruction problem by applying either generation-based or reconstruction-based methods. Although each method has its own advantage, none of them is capable of recovering a high-fidelity and re-renderable facial texture, where the term 're-renderable' demands the facial texture to be spatially complete and disentangled with environmental illumination. In this paper, we propose a novel self-supervised learning framework for reconstructing high-quality 3D faces from single-view images in-the-wild. Our main idea is to first utilize the prior generation module to produce a prior albedo, then leverage the detail refinement module to obtain detailed albedo. To further make facial textures disentangled with illumination, we present a novel detailed illumination representation which is reconstructed with the detailed albedo together. We also design several regularization loss functions on both the albedo side and illumination side to facilitate the disentanglement of these two factors. Finally, thanks to the differentiable rendering technique, our neural network can be efficiently trained in a self-supervised manner. Extensive experiments on challenging datasets demonstrate that our framework substantially outperforms state-of-the-art approaches in both qualitative and quantitative comparisons.


翻译:从单一图像中重建高纤维化 3D 面部纹理是一项具有挑战性的任务,因为缺乏完整的面部信息以及3D脸和2D图像之间的域差。最近的工作通过采用以代为基础的或以重建为基础的方法来解决面部纹理重建问题。虽然每种方法都有其自身的优势,但它们没有一个能够从高纤维化和可再现的面部纹理中恢复高纤维化和可再现的面部纹理。为了进一步使面部纹理与不洁相混淆,我们提出了一个与环境照明相混淆的空间完整的新的详细描述。在本文中,我们提出了一个全新的自我监督的比较学习框架,用于重建三D脸部的高质量图像。我们的主要想法是首先利用前一代的模范来生成一个先前的升温,然后利用细节改进模块来获取详细的高温化。为了进一步使面部纹理脱落,我们展示了与详细平面图一起重建的面部透析。我们还设计了几个自我监督的自我监督的学习框架。我们设计了一些自我监督的自我校正损失功能, 最终在高压化的网络技术上展示了我们不同的自我变形,可以使系统变形变形变形变形的自我变形的自我变形。

0
下载
关闭预览

相关内容

3D是英文“Three Dimensions”的简称,中文是指三维、三个维度、三个坐标,即有长、有宽、有高,换句话说,就是立体的,是相对于只有长和宽的平面(2D)而言。
最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
3D目标检测进展综述
专知会员服务
191+阅读 · 2020年4月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
【学习】CVPR 2017 Tutorial:如何从图像来构建3D模型
机器学习研究会
6+阅读 · 2017年8月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
7+阅读 · 2018年1月21日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
【学习】CVPR 2017 Tutorial:如何从图像来构建3D模型
机器学习研究会
6+阅读 · 2017年8月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员