转自:洪亮劼
虽然现在以深度学习为代表新技术已经席卷计算机视觉(Computer Vision)的很多问题,可能使得很多初学者认为计算机视觉就只是图像分类这样的任务。实际上,计算机视觉有很多更有意思也更有挑战的问题。比如在今年的CVPR 2017上,来自Stevens Institute of Technology、Microsoft HoloLens、URC Ventures以及ETH Zürich的学者就为大家带来一场精彩的讲解如何从图像来构建3D模型的讲座。整个讲座的很有内容,涵盖了包括大规模图像处理技术、图像的存取、图像的重建以及一些工程技巧。比较值得推荐的是,这个讲座中有不少部分,是从Pipeline这个角度来讲解,使得大家能够有一个全局的认识。尽管不是所有的研究者或者公司都有这样的应用,但是这套讲座不失为了解图像处理3D技术的一个入门教程。值得大家泛读。
Large-scale image-based 3D modeling has been a major goal of computer vision, enabling a wide range of applications including virtual reality, image-based localization, and autonomous navigation. One of the most diverse data sources for modeling is Internet photo collections. In the last decade, the computer vision community has made tremendous progress in large-scale structure-from-motion and multi-view stereo from Internet datasets. However, utilizing this wealth of information for 3D modeling remains a challenging problem due to the ever-increasing amount of image data. In a short period of time, research in large-scale modeling has progressed from modeling using several thousand images, to modeling from city-scale datasets of several million, and recently to reconstructing an Internet-scale dataset comprising 100 million images. This tutorial will present the main underlying technologies enabling these innovations.
链接:
https://demuc.de/tutorials/cvpr2017/
原文链接:
https://m.weibo.cn/5501429448/4137686992139540