Fluctuations of dynamical quantities are fundamental and inevitable. For the booming research in nanotechnology, huge relative fluctuation comes with the reduction of system size, leading to large uncertainty for the estimates of dynamical quantities. Thus, increasing statistical efficiency, i.e., reducing the number of samples required to achieve a given accuracy, is of great significance for accurate estimation. Here we propose a theory as a fundamental solution for such problem by constructing auxiliary path for each real path. The states on auxiliary paths constitute canonical ensemble and share the same macroscopic properties with the initial states of the real path. By implementing the theory in molecular dynamics simulations, we obtain a nanoscale Couette flow field with an accuracy of 0.2 {\mu}m/s with relative standard error < 0.1. The required number of samples is reduced by 12 orders compared to conventional method. The predicted thermolubric behavior of water sliding on a self-assembled surface is directly validated by experiment under the same velocity. As the theory only assumes the system is initially in thermal equilibrium then driven from that equilibrium by an external perturbation, we believe it could serve as a general approach for extracting the accurate estimate of dynamical quantities from large fluctuations to provide insights on atomic level under experimental conditions, and benefit the studies on mass transport across (biological) nanochannels and fluid film lubrication of nanometer thickness.


翻译:动态量的波动是基本和不可避免的。对于纳米技术的蓬勃研究来说,巨大的相对波动随着系统规模的缩小而来,导致动态量估计的不确定性很大。因此,提高统计效率,即减少实现特定准确性所需的样本数量,对于准确估计非常重要。这里我们提出了一个理论,作为这些问题的基本解决办法,为每个真实路径建造辅助路径。辅助路径上的各州构成可控共聚,与真实路径的初始状态具有相同的宏观特征。通过在分子动态模拟中应用理论,我们获得了一个纳米库韦特流场,精确度为0.2 um/s,相对标准误差 < 0.1;所需样品数量比常规方法减少12个订单。预测的自封表面滑水的热性行为通过同一速度的实验直接得到验证。由于理论仅假设系统最初是在热平衡中,然后通过外部摄像性模拟从该平衡中驱动,因此,我们获得了一个纳米基流流场流场的精确度为0.2 0.2 0.1;我们认为,所需的样品数量比常规方法减少了12个订单。预测的温度滑动行为由同一速度进行。 理论仅假设系统最初是热平衡,然后由外部摄取到大规模的深度深度的深度,从大规模的深度研究,从大规模的深度分析,可以提供动态的精确的精确度,从而获得。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
161+阅读 · 2020年1月16日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年9月6日
VIP会员
相关资讯
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员