Critical scenario generation requires the ability of sampling critical combinations from the infinite parameter space in the logic scenario. Existing solutions aim to explore the correlation of action parameters in the initial scenario rather than action sequences. How to model action sequences so that one can further consider the effects of different action parameters in the scenario is the bottleneck of the problem. In this paper, we attack the problem by proposing the ECSAS framework. Specifically, we first propose a description language, BTScenario, allowing us to model action sequences of the scenarios. We then use reinforcement learning to search for combinations of critical action parameters. To increase efficiency, we further propose several optimizations, including action masking and replay buffer. We have implemented ECSAS, and experimental results show that it is more efficient than native approaches such as random and combination testing in various nontrivial scenarios.
翻译:关键情景生成要求能够从逻辑情景的无限参数空间中取样关键组合。 现有解决方案旨在探索初始情景中行动参数的相关性,而不是行动序列。 如何模拟行动序列以便人们能够进一步考虑不同行动参数在情景中的影响是问题的瓶颈。 在本文中,我们通过提出ECSAS框架来应对问题。 具体地说, 我们首先提出描述语言 BTScenario, 允许我们模拟这些情景的动作序列。 然后我们用强化学习来寻找关键行动参数的组合。 为了提高效率,我们进一步提出了几项优化, 包括行动遮掩和重新弹动缓冲。 我们实施了ECSAS, 实验结果显示, 它比在各种非三角情景中随机和组合测试等本地方法更有效。