Drivers have a responsibility to exercise reasonable care to avoid collision with other road users. This assumed responsibility allows interacting agents to maintain safety without explicit coordination. Thus to enable safe autonomous vehicle (AV) interactions, AVs must understand what their responsibilities are to maintain safety and how they affect the safety of nearby agents. In this work we seek to understand how responsibility is shared in multi-agent settings where an autonomous agent is interacting with human counterparts. We introduce Responsibility-Aware Control Barrier Functions (RA-CBFs) and present a method to learn responsibility allocations from data. By combining safety-critical control and learning-based techniques, RA-CBFs allow us to account for scene-dependent responsibility allocations and synthesize safe and efficient driving behaviors without making worst-case assumptions that typically result in overly-conservative behaviors. We test our framework using real-world driving data and demonstrate its efficacy as a tool for both safe control and forensic analysis of unsafe driving.
翻译:驾驶员有责任采取合理的谨慎措施,避免与其他道路使用者发生碰撞。这一责任的承担使互动人员能够在没有明确协调的情况下保持安全。因此,为了能够安全自主车辆(AV)的相互作用,AV必须了解他们的责任是维护安全,以及他们如何影响附近代理人的安全。在这项工作中,我们力求了解在一个自主代理人与人类同行互动的多试剂环境中如何分担责任。我们引入了责任软件控制屏障功能(RA-CBFs),并提供了一个从数据中学习责任分配的方法。通过将安全关键控制和学习技术结合起来,RA-CBFs允许我们核算视现场情况而定的责任分配,并综合安全和高效的驾驶行为,而不作出通常会导致过度保守行为的最坏假设。我们用现实世界驱动数据测试我们的框架,并展示其作为安全控制和对不安全驾驶进行法证分析的工具的功效。</s>