One of the major shortcomings of variational autoencoders is the inability to produce generations from the individual modalities of data originating from mixture distributions. This is primarily due to the use of a simple isotropic Gaussian as the prior for the latent code in the ancestral sampling procedure for the data generations. We propose a novel formulation of variational autoencoders, conditional prior VAE (CP-VAE), which learns to differentiate between the individual mixture components and therefore allows for generations from the distributional data clusters. We assume a two-level generative process with a continuous (Gaussian) latent variable sampled conditionally on a discrete (categorical) latent component. The new variational objective naturally couples the learning of the posterior and prior conditionals, and the learning of the latent categories encoding the multimodality of the original data in an unsupervised manner. The data-dependent conditional priors are then used to sample the continuous latent code when generating new samples from the individual mixture components corresponding to the multimodal structure of the original data. Our experimental results illustrate the generative performance of our new model comparing to multiple baselines.
翻译:变式自动计算器的主要缺点之一是无法从来自混合物分布的数据的单个模式中产生代代相传的数据,这主要是因为数据代相传的原始取样程序使用简单的异位高西安作为数据代相传的原始代码的前身。我们提议了一种新颖的变式自动计算器(有条件的先天VAE(CP-VAE))的配方新配方,该配方可以区分单个混合物的成分,从而允许从分布式数据组中分代代相传。我们假设以离散(分类)潜在(Gaussian)潜在变量部分为条件,进行双级基因变异过程。新的变式目标自然结合了对远端和先前附加条件的学习,以及以不受监督的方式对原始数据的多式联运进行学习的潜在类别进行编码。然后,根据数据设定的先导法,在从与原始数据多式联运结构相对应的单个混合物组成部分中生成新的样本时,用来取样连续的隐值代码。我们的实验结果说明了我们新模型的基因化性表现,将比作多个基线。