Model-agnostic meta learning (MAML) is currently one of the dominating approaches for few-shot meta-learning. Albeit its effectiveness, the optimization of MAML can be challenging due to the innate bilevel problem structure. Specifically, the loss landscape of MAML is much more complex with possibly more saddle points and local minimizers than its empirical risk minimization counterpart. To address this challenge, we leverage the recently invented sharpness-aware minimization and develop a sharpness-aware MAML approach that we term Sharp-MAML. We empirically demonstrate that Sharp-MAML and its computation-efficient variant can outperform the plain-vanilla MAML baseline (e.g., $+3\%$ accuracy on Mini-Imagenet). We complement the empirical study with the convergence rate analysis and the generalization bound of Sharp-MAML. To the best of our knowledge, this is the first empirical and theoretical study on sharpness-aware minimization in the context of bilevel learning. The code is available at https://github.com/mominabbass/Sharp-MAML.
翻译:模型-不可知元学习(MAML)目前是少数元元学习的主导方法之一。尽管其有效性是有效的,但优化MAML可能由于内在的双层问题结构而具有挑战性。具体地说,MAML的丧失面貌比其经验性风险最小化的对口单位更为复杂,可能有更多的搭载点和当地最小化因素。为了应对这一挑战,我们利用最近发明的敏锐-觉悟最小化(MAML),并开发了一种我们称为Sharp-MAML的敏锐-觉悟-觉悟MAML方法。我们从经验上表明,Sharp-MAML及其计算效率变异体能够超过普通-香草MAML的基线(例如迷你-IMLnet的精度 $+3 $+ $ $ $ $ $ $ $ $) 。我们对经验性研究的补充是趋同率分析以及夏普- MAML的概括性约束。我们最了解的是,这是关于双级学习中精度最小化-觉最小化的第一次经验和理论研究。该代码可在http://github.com/mominabass/Sharp-mabass/Sharp-MAML.