To validate the safety of automated vehicles (AV), scenario-based testing aims to systematically describe driving scenarios an AV might encounter. In this process, continuous inputs such as velocities result in an infinite number of possible variations of a scenario. Thus, metamodels are used to perform analyses or to select specific variations for examination. However, despite the safety criticality of AV testing, metamodels are usually seen as a part of an overall approach, and their predictions are not questioned. This paper analyzes the predictive performance of Gaussian processes (GP), deep Gaussian processes, extra-trees, and Bayesian neural networks (BNN), considering four scenarios with 5 to 20 inputs. Building on this, an iterative approach is introduced and evaluated, which allows to efficiently select test cases for common analysis tasks. The results show that regarding predictive performance, the appropriate selection of test cases is more important than the choice of metamodels. However, the choice of metamodels remains crucial: Their great flexibility allows BNNs to benefit from large amounts of data and to model even the most complex scenarios. In contrast, less flexible models like GPs convince with higher reliability. Hence, relevant test cases are best explored using scalable virtual test setups and flexible models. Subsequently, more realistic test setups and more reliable models can be used for targeted testing and validation.


翻译:为了验证自动车辆(AV)的安全性,基于情景的测试旨在系统地描述AV可能遇到的驾驶场景;在这一过程中,诸如速度等持续投入导致一种情景可能发生的变化的无限数量;因此,利用元模型进行分析或选择具体的变异进行检查;然而,尽管AV测试的安全性至关重要,但元模型通常被视为一种总体方法的一部分,其预测并不受到质疑。本文分析Gossian流程(GP)、深高山流程、外树和Bayesian神经网络(BNN)的预测性业绩,考虑四种情景,有5至20个投入。在此基础上,引入并评估了迭接式方法,以便能够高效地选择用于共同分析任务的测试案例。结果显示,在预测性绩效方面,适当选择测试案例比选择模型更为重要。然而,模型的选择仍然至关重要:其巨大的灵活性使BNUS从大量数据中受益,甚至模拟最复杂的情景。对比之下,采用更灵活、更不灵活的模型,例如采用更灵活、更精确的模型,采用更精确的、更精确的、更精确的、更精确的、更精确的、更精确的检验的模型,以及采用更精确的、更精确的、更精确的、更精确的、更精确的、更精确的、更精确的、更精确的检验的检验的模型的模型,可以用来进行。

0
下载
关闭预览

相关内容

CASES:International Conference on Compilers, Architectures, and Synthesis for Embedded Systems。 Explanation:嵌入式系统编译器、体系结构和综合国际会议。 Publisher:ACM。 SIT: http://dblp.uni-trier.de/db/conf/cases/index.html
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
120+阅读 · 2022年4月21日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年11月4日
Arxiv
35+阅读 · 2022年3月14日
Arxiv
23+阅读 · 2022年2月24日
VIP会员
相关资讯
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员