This paper proposes a self-supervised learned local detector and descriptor, called EventPoint, for event stream/camera tracking and registration. Event-based cameras have grown in popularity because of their biological inspiration and low power consumption. Despite this, applying local features directly to the event stream is difficult due to its peculiar data structure. We propose a new time-surface-like event stream representation method called Tencode. The event stream data processed by Tencode can obtain the pixel-level positioning of interest points while also simultaneously extracting descriptors through a neural network. Instead of using costly and unreliable manual annotation, our network leverages the prior knowledge of local feature extraction on color images and conducts self-supervised learning via homographic and spatio-temporal adaptation. To the best of our knowledge, our proposed method is the first research on event-based local features learning using a deep neural network. We provide comprehensive experiments of feature point detection and matching, and three public datasets are used for evaluation (i.e. DSEC, N-Caltech101, and HVGA ATIS Corner Dataset). The experimental findings demonstrate that our method outperforms SOTA in terms of feature point detection and description.


翻译:本文建议了一种自监督的本地已知探测器和描述器,称为“事件点”,用于事件流/摄像机跟踪和登记。事件相机由于其生物灵感和低耗力,越来越受欢迎。尽管如此,直接对事件流应用本地特征由于特殊的数据结构而困难重重。我们建议了一种新的时间表表样事件流代表法,称为“天码”。Tencode处理的事件流数据可以通过神经网络获得对感兴趣的点进行像素级定位,同时通过神经网络提取描述器。我们的网络使用昂贵和不可靠的人工注解,而不是利用以前对颜色图像的本地特征提取知识,并且通过感光学和阵列-时空适应进行自我监督学习。我们最了解的是,我们建议的方法是利用深层神经网络对基于事件的本地特征学习进行首次研究。我们提供了特征点检测和匹配的全面实验,并使用三个公共数据集进行评估(即DSEC、N-Caltech101和HVGA ATIS Corn数据设置特征特征描述系统)实验性结果和SO系统特征特征描述。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
23+阅读 · 2021年3月4日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
19+阅读 · 2018年5月17日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员