The study of probability distributions for random variables and their algebraic combinations has been a central focus driving the advancement of probability and statistics. Since the 1920s, the challenge of calculating the probability distributions of sums, differences, products, and quotients of independent random variables have drawn the attention of numerous statisticians and mathematicians who studied the algebraic properties and relationships of random variables. Statistical distributions are highly helpful in data science and machine learning, as they provide a range of possible values for the variables, aiding in the development of a deeper understanding of the underlying problem. In this paper, we have presented a new probability distribution based on the $\hat{I}$-function. Also, we have discussed the applications of the $\hat{I}$ function, particularly in deriving the distributions of product and the quotient involving two independent $\hat{I}$ function variates. Additionally, it has been shown that both the product and quotient of two independent $\hat{I}$-function variates also follow the $\hat{I}$-function distribution. Furthermore, the new distribution, known as the $\hat{I}$-function distribution, includes several well-known classical distributions such as the gamma, beta, exponential, normal H-function, and G-function distributions, among others, as special cases. Therefore, the $\hat{I}$-function distribution can be considered a characterization or generalization of the above-mentioned distributions.
翻译:暂无翻译