Many photonic devices, such as photonic crystal slabs, cross gratings, and periodic metasurfaces, are biperiodic structures with two independent periodic directions, and are sandwiched between two homogeneous media. Many applications of these devices are closely related to resonance phenomena. Therefore, efficient computation of resonant modes is crucial in device design and structure analysis. Since resonant modes satisfy outgoing radiation conditions, perfectly matched layers (PMLs) are usually used to truncate the unbounded spatial variable perpendicular to the periodic directions. In this paper, we develop an efficient method without using PMLs to calculate resonant modes in biperiodic structures. We reduce the original eigenvalue problem to a small matrix nonlinear eigenvalue problem which is solved by the contour integral method. Numerical examples show that our method is efficient with respect to memory usage and CPU time, free of spurious solutions, and determines degenerate resonant modes without any difficulty.
翻译:暂无翻译