The efficient segmentation of foreground text information from the background in degraded color document images is a hot research topic. Due to the imperfect preservation of ancient documents over a long period of time, various types of degradation, including staining, yellowing, and ink seepage, have seriously affected the results of image binarization. In this paper, a three-stage method is proposed for image enhancement and binarization of degraded color document images by using discrete wavelet transform (DWT) and generative adversarial network (GAN). In Stage-1, we use DWT and retain the LL subband images to achieve the image enhancement. In Stage-2, the original input image is split into four (Red, Green, Blue and Gray) single-channel images, each of which trains the independent adversarial networks. The trained adversarial network models are used to extract the color foreground information from the images. In Stage-3, in order to combine global and local features, the output image from Stage-2 and the original input image are used to train the independent adversarial networks for document binarization. The experimental results demonstrate that our proposed method outperforms many classical and state-of-the-art (SOTA) methods on the Document Image Binarization Contest (DIBCO) dataset. We release our implementation code at https://github.com/abcpp12383/ThreeStageBinarization.


翻译:在已退化的彩色文档图像中,背景背景的浅色文本信息的有效分割是一个热门的研究课题。由于长期保存古代文件不完善,各种类型的退化,包括污渍、黄色和墨水渗出,严重影响了图像的二进制结果。在本文中,建议采用三阶段方法,利用离散的波盘变换(DWT)和基因对抗网络(GAN)来增强已退化的彩色文档图像并进行二进制。在第1阶段,我们使用DWT并保留LLL子带图像来实现图像的增强。在第二阶段,原始输入图像分为四种(红色、绿色、蓝色和灰色)单通道图像,其中每种图像都用于培训独立的对抗网络。经过培训的对抗网络模型用于从图像中提取背景信息的颜色。在第3阶段,为了将全球和地方特征、第2阶段的输出图像图像图像和原始输入图像图像图像图像用于培训独立的对立网络,以便实现图像的增强。实验结果显示,我们所提议的方法超越了我们用于许多古典-DI-B版本版本版本的版本数据库数据库数据库数据。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
VIP会员
相关VIP内容
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员