The regression of a functional response on a set of scalar predictors can be a challenging task, especially if there is a large number of predictors, these predictors have interaction effects, or the relationship between those predictors and the response is nonlinear. In this work, we propose a solution to this problem: a feed-forward neural network (NN) designed to predict a functional response using scalar inputs. First, we transform the functional response to a finite-dimension representation and then we construct a NN that outputs this representation. We proposed different objective functions to train the NN. The proposed models are suited for both regularly and irregularly spaced data and also provide multiple ways to apply a roughness penalty to control the smoothness of the predicted curve. The difficulty in implementing both those features lies in the definition of objective functions that can be back-propagated. In our experiments, we demonstrate that our model outperforms the conventional function-on-scalar regression model in multiple scenarios while computationally scaling better with the dimension of the predictors.
翻译:一组星标预测器的功能响应回归可能是一项艰巨的任务, 特别是如果有大量预测器, 这些预测器具有互动效应, 或这些预测器与响应器之间的关系是非线性。 在这项工作中, 我们提出解决这个问题的办法: 向导神经网络(NN), 目的是利用星标输入预测功能响应。 首先, 我们将功能响应转换成一个有限尺寸代表器, 然后构建一个输出该表示器的 NNW 。 我们提议了不同的客观功能来培训 NN。 提议的模型既适合定期又不定期的空格数据, 也提供了多种方法来应用粗度惩罚来控制预测曲线的顺利性。 执行这两个特征的难度在于客观功能的定义, 而这些功能可以反向调整。 在我们的实验中, 我们证明我们的模型在多种情况下超越常规功能- 天标回归模型, 同时计算比预测器的尺寸更好。