Existing domain adaptation methods tend to treat every domain equally and align them all perfectly. Such uniform alignment ignores topological structures among different domains; therefore it may be beneficial for nearby domains, but not necessarily for distant domains. In this work, we relax such uniform alignment by using a domain graph to encode domain adjacency, e.g., a graph of states in the US with each state as a domain and each edge indicating adjacency, thereby allowing domains to align flexibly based on the graph structure. We generalize the existing adversarial learning framework with a novel graph discriminator using encoding-conditioned graph embeddings. Theoretical analysis shows that at equilibrium, our method recovers classic domain adaptation when the graph is a clique, and achieves non-trivial alignment for other types of graphs. Empirical results show that our approach successfully generalizes uniform alignment, naturally incorporates domain information represented by graphs, and improves upon existing domain adaptation methods on both synthetic and real-world datasets. Code will soon be available at https://github.com/Wang-ML-Lab/GRDA.
翻译:现有的领域自适应方法倾向于平等地对待每个领域并完美地对齐它们。这种统一的对齐忽略了不同领域之间的拓扑结构。因此,它可能对接近的领域有益,但不一定适用于远离的领域。在这项工作中,我们通过使用一个领域图来编码领域相邻性(#例如,一个以美国各州为领域,每个州为一个领域,每条边表示相邻性的图),从而放宽了这种统一对齐。我们使用编码条件化图嵌入来推广现有的对抗性学习框架,添加了一个新的图鉴别器。理论分析表明,在均衡状态下,我们的方法在图是一个团时恢复了经典的领域自适应,并在其他类型的图上实现了非平凡的对齐。实证结果表明,我们的方法成功的推广了统一的对齐方法,自然地将领域信息表示为图形,并在合成和真实数据集上改进了现有的领域自适应方法。代码将很快在 https://github.com/Wang-ML-Lab/GRDA上发布。