We introduce a method for performing cross-validation without sample splitting. The method is well-suited for problems where traditional sample splitting is infeasible, such as when data are not assumed to be independently and identically distributed. Even in scenarios where sample splitting is possible, our method offers a computationally efficient alternative for estimating prediction error, achieving comparable or even lower error than standard cross-validation at a significantly reduced computational cost. Our approach constructs train-test data pairs using externally generated Gaussian randomization variables, drawing inspiration from recent randomization techniques such as data-fission and data-thinning. The key innovation lies in a carefully designed correlation structure among these randomization variables, referred to as antithetic Gaussian randomization. This correlation is crucial in maintaining a bounded variance while allowing the bias to vanish, offering an additional advantage over standard cross-validation, whose performance depends heavily on the bias-variance tradeoff dictated by the number of folds. We provide a theoretical analysis of the mean squared error of the proposed estimator, proving that as the level of randomization decreases to zero, the bias converges to zero, while the variance remains bounded and decays linearly with the number of repetitions. This analysis highlights the benefits of the antithetic Gaussian randomization over independent randomization. Simulation studies corroborate our theoretical findings, illustrating the robust performance of our cross-validated estimator across various data types and loss functions.


翻译:暂无翻译

1
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
Arxiv
11+阅读 · 2018年4月8日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
Arxiv
11+阅读 · 2018年4月8日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员