The Edge Multicut problem is a classical cut problem where given an undirected graph $G$, a set of pairs of vertices $\mathcal{P}$, and a budget $k$, the goal is to determine if there is a set $S$ of at most $k$ edges such that for each $(s,t) \in \mathcal{P}$, $G-S$ has no path from $s$ to $t$. Edge Multicut has been relatively recently shown to be fixed-parameter tractable (FPT), parameterized by $k$, by Marx and Razgon [SICOMP 2014], and independently by Bousquet et al. [SICOMP 2018]. In the weighted version of the problem, called Weighted Edge Multicut one is additionally given a weight function $\mathtt{wt} : E(G) \to \mathbb{N}$ and a weight bound $w$, and the goal is to determine if there is a solution of size at most $k$ and weight at most $w$. Both the FPT algorithms for Edge Multicut by Marx et al. and Bousquet et al. fail to generalize to the weighted setting. In fact, the weighted problem is non-trivial even on trees and determining whether Weighted Edge Multicut on trees is FPT was explicitly posed as an open problem by Bousquet et al. [STACS 2009]. In this article, we answer this question positively by designing an algorithm which uses a very recent result by Kim et al. [STOC 2022] about directed flow augmentation as subroutine. We also study a variant of this problem where there is no bound on the size of the solution, but the parameter is a structural property of the input, for example, the number of leaves of the tree. We strengthen our results by stating them for the more general vertex deletion version.


翻译:Edge Doute 是一个经典的切开问题, 如果考虑到一个未引导的图形$G$, 一组螺旋以美元为基数, 由马克斯和拉兹贡( SICOMP 2014) 以美元为基数, 且由Bousquet 等人独立, 目标是确定是否设定了美元, 以美元为基数边缘, 因此对于每美元, t) 以美元为基数 = mathcal{P} 美元, $G- S$没有一条从美元到美元的道路。 Edge Douter最近显示, 以美元为基数为基数, 以美元和Razgon [SICOMP 2014] 以美元为基数为基数, 以美元为基数的基数为基数, 以美元为基数为基数的基数为基数, 以美元为基数的基数为基数, 以美元为基数为基数的基数, 以美元为基数为基数的基数为基数为基数, 。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年7月8日
Arxiv
0+阅读 · 2022年7月8日
Pre-training helps Bayesian optimization too
Arxiv
0+阅读 · 2022年7月7日
Arxiv
0+阅读 · 2022年7月6日
VIP会员
相关资讯
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员