One of the most elusive challenges within the area of topological data analysis is understanding the distribution of persistence diagrams. Despite much effort, this is still largely an open problem. In this paper, we present a series of novel conjectures regarding the behavior of persistence diagrams arising from random point-clouds. We claim that these diagrams obey a universal probability law, and include an explicit expression as a candidate for what this law is. We back these conjectures with an exhaustive set of experiments, including both simulated and real data. We demonstrate the power of these conjectures by proposing a new hypothesis testing framework for individual features within persistence diagrams.
翻译:地形学数据分析领域最难以捉摸的挑战之一是了解持久性图的分布。尽管做了许多努力,但这在很大程度上仍然是一个尚未解决的问题。在本文中,我们提出了一系列关于随机点球产生的持久性图的行为的新猜想。我们声称这些图符合普遍概率法,并明确表达这一法律的候选性。我们用一系列详尽的实验,包括模拟和真实数据,来支持这些猜想。我们通过为持久性图中的个人特征提出一个新的假设测试框架,显示了这些猜想的力量。