In recent years, zero-correlation zone (ZCZ) sequences are being studied due to their significant applications in quasi-synchronous code division multiple access (QS-CDMA) systems and other wireless communication domains. However, the lengths of most existing ZCZ sequences are limited, and their parameters are not flexible, which are leading to practical limitations in their use in QS-CDMA and other communication systems. The current study proposes a direct construction of ZCZ sequences of prime-power length with flexible parameters by using multivariable functions. In the proposed construction, we first present a multivariable function to generate a vector with specific properties; this is further used to generate another class of multivariable functions to generate the desired $(p^t,(p-1)p^n,p^{n+t+1})$-ZCZ sequence set, where $p$ is a prime number, $t,n$ are positive integers, and $t\leq n$. The constructed ZCZ sequence set is optimal for the binary case and asymptotically optimal for the non-binary case by the \emph{Tang-Fan-Matsufuji} bound. Moreover, a relation between the second-order cosets of first-order generalized Reed-Muller code and the proposed ZCZ sequences is also established. The proposed construction of ZCZ sequences is compared with existing constructions, and it is observed that the parameters of this ZCZ sequence set are a generalization of that of in some existing works. Finally, the performance of the proposed ZCZ-based QS-CDMA system is compared with the Walsh-Hadamard and Gold code-based QS-CDMA system.


翻译:近年来,正在研究零热带序列(ZCZ),因为它们在准同步代码区多存取系统和其他无线通信域中的显著应用。然而,大多数现有的ZCZ序列的长度有限,其参数不灵活,导致在QS-CDMA和其他通信系统中使用零热带序列(ZCZ)的实际限制。本项研究建议使用多变量参数,直接构造ZCZ主力序列,并使用灵活参数。在拟议构造中,我们首先展示了生成具有特定属性的矢量的多变函数;但这一功能还被进一步用于生成另一类多变函数,以产生所期望的$(p}t,(p)p ⁇ n+t+1})的ZCRCZ序列。$p是正数, $t,n是提议的正整数,而$t\leq n美元。根据二进制的ZCSQRQR-C序列, 也观察到了这个系统与二进制的基数和亚化的S-C-SQ-Z的基-SQ-SQ-SQ-SQ-Sl-M-Sl-Sl-Sl-M-S-S-S-M-S-S-Sl-Sl-S-Sl-Sl-S-S-S-Sl-Sl-S-Z的运行的当前硬-Sl-S-S-S-S-Sl-S-S-S-S-S-S-Sl-S-Sl-Sl-S-S-S-S-S-S-S-Sl-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-SQ-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年8月26日
Arxiv
0+阅读 · 2022年8月26日
Arxiv
0+阅读 · 2022年8月25日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员