We study the critical window of the symmetric binary perceptron, or equivalently, combinatorial discrepancy. Consider the problem of finding a binary vector $\sigma$ satisfying $\|A\sigma\|_\infty \le K$, where $A$ is an $\alpha n \times n$ matrix with iid Gaussian entries. For fixed $K$, at which densities $\alpha$ is this constraint satisfaction problem (CSP) satisfiable? A sharp threshold was recently established by Perkins and Xu, and Abbe, Li, and Sly , answering this to first order. Namely, for each $K$ there exists an explicit critical density $\alpha_c$ so that for any fixed $\epsilon > 0$, with high probability the CSP is satisfiable for $\alpha n < (\alpha_c - \epsilon ) n$ and unsatisfiable for $\alpha n > (\alpha_c + \epsilon) n$. This corresponds to a bound of $o(n)$ on the size of the critical window. We sharpen these results significantly, as well as provide exponential tail bounds. Our main result is that, perhaps surprisingly, the critical window is actually at most $O(\log n)$. More precisely, with high probability the CSP is satisfiable for $\alpha n < \alpha_c n -O(\log n)$ and unsatisfiable for any $\alpha n > \alpha_c n + \omega(1)$. This implies the symmetric perceptron has nearly the "sharpest possible transition," adding it to a short list of CSP for which the critical window is rigorously known to be of near-constant width.
翻译:我们用 iid Gausant 条目来研究对称二进制增色或等量的组合差异的关键窗口 。 考虑找到一个双向矢量 $\ sgma$ 满足 $\ A\ sgma\ incty\ le K$, 美元是 $\ alpha n\ time n$ 矩阵, 有 iid Gausant 条目。 对于固定的 $K$ 来说, 密度 $\ alpha$ 是 约束性满意度问题 。 Perkins and Xu, 以及 Abbe, Li, and Sly, 按第一个顺序回答这个问题的问题。 也就是说, 每K$ 明显的关键密度 $\ alpha_ c_ c, 任何固定的 epislexsilan nqual is more dealfrialal ralal ralal as a prequialalal ral_ caltime, 我们的正alalalal as a ral raltideal ral ral 。 lifal_ cal_ as mexal exal as a irtize, 我们 ral raltial ral ral raltial 。 或cal ral ral_ c tital_ ral ral ral_ ral_ 或cal_ 或cal_ maxxxxxxxxxx 。 或 或 或 或 。 或 或 或 或 或以 或以 或以 或以 maxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx) 或以 或以 或以 直等等等等等等等等等等等等等等等等等, 直正正正正正正正正正正正正正正正正正正正正正正正正正正正正正正正正正正正正正正正正正正正正正正正正