Detecting abrupt changes in temporal behavior patterns is of interest in many industrial and security applications. Abrupt changes are often local and observable primarily through a well-aligned sensing action (e.g., a camera with a narrow field-of-view). Due to resource constraints, continuous monitoring of all of the sensors is impractical. We propose the bandit quickest changepoint detection framework as a means of balancing sensing cost with detection delay. In this framework, sensing actions (or sensors) are sequentially chosen, and only measurements corresponding to chosen actions are observed. We derive an information-theoretic lower bound on the detection delay for a general class of finitely parameterized probability distributions. We then propose a computationally efficient online sensing scheme, which seamlessly balances the need for exploration of different sensing options with exploitation of querying informative actions. We derive expected delay bounds for the proposed scheme and show that these bounds match our information-theoretic lower bounds at low false alarm rates, establishing optimality of the proposed method. We then perform a number of experiments on synthetic and real datasets demonstrating the efficacy of our proposed method.


翻译:在许多工业和安全应用中,发现时间行为模式的突然变化是值得注意的。突变往往是局部性的,主要通过一种非常相近的感测行动(例如一台视野狭窄的照相机)观察到的。由于资源限制,对所有传感器的连续监测是不切实际的。我们建议采用土匪最迅速的变化点探测框架,以平衡感测成本和探测延迟。在这个框架内,测距行动(或传感器)是按顺序选择的,只观察到与所选择的行动相应的测量。我们从一般的有限参数概率分布的探测延迟中得出一个信息理论下限。我们然后提出一个计算高效的在线遥感计划,在探索不同感测选项的需要与利用查询信息行动之间保持无缝的平衡。我们为提议的测距图定了预期的延迟界限,并表明这些界限与我们的信息-感测低的界限相匹配,以低的误警报率确定拟议方法的最佳性。我们随后对显示我们拟议方法的功效的合成和真实数据集进行了多次实验。

0
下载
关闭预览

相关内容

专知会员服务
33+阅读 · 2021年9月16日
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
53+阅读 · 2020年9月7日
异常检测(Anomaly Detection)综述
极市平台
20+阅读 · 2020年10月24日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
已删除
将门创投
3+阅读 · 2019年1月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
学好机器学习,这里有你想要的一切
算法与数据结构
5+阅读 · 2018年6月19日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
动手写机器学习算法:异常检测 Anomaly Detection
七月在线实验室
11+阅读 · 2017年12月8日
Few-shot Scene-adaptive Anomaly Detection
Arxiv
8+阅读 · 2020年7月15日
Clustered Object Detection in Aerial Images
Arxiv
5+阅读 · 2019年8月27日
Object Detection in 20 Years: A Survey
Arxiv
48+阅读 · 2019年5月13日
Arxiv
4+阅读 · 2018年3月14日
Arxiv
7+阅读 · 2017年12月26日
VIP会员
相关资讯
异常检测(Anomaly Detection)综述
极市平台
20+阅读 · 2020年10月24日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
已删除
将门创投
3+阅读 · 2019年1月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
学好机器学习,这里有你想要的一切
算法与数据结构
5+阅读 · 2018年6月19日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
动手写机器学习算法:异常检测 Anomaly Detection
七月在线实验室
11+阅读 · 2017年12月8日
Top
微信扫码咨询专知VIP会员