We present KDFNet, a novel method for 6D object pose estimation from RGB images. To handle occlusion, many recent works have proposed to localize 2D keypoints through pixel-wise voting and solve a Perspective-n-Point (PnP) problem for pose estimation, which achieves leading performance. However, such voting process is direction-based and cannot handle long and thin objects where the direction intersections cannot be robustly found. To address this problem, we propose a novel continuous representation called Keypoint Distance Field (KDF) for projected 2D keypoint locations. Formulated as a 2D array, each element of the KDF stores the 2D Euclidean distance between the corresponding image pixel and a specified projected 2D keypoint. We use a fully convolutional neural network to regress the KDF for each keypoint. Using this KDF encoding of projected object keypoint locations, we propose to use a distance-based voting scheme to localize the keypoints by calculating circle intersections in a RANSAC fashion. We validate the design choices of our framework by extensive ablation experiments. Our proposed method achieves state-of-the-art performance on Occlusion LINEMOD dataset with an average ADD(-S) accuracy of 50.3% and TOD dataset mug subset with an average ADD accuracy of 75.72%. Extensive experiments and visualizations demonstrate that the proposed method is able to robustly estimate the 6D pose in challenging scenarios including occlusion.


翻译:我们为 6D 对象展示了 KDFNet, 这是 6D 对象从 RGB 图像中进行估计的一种新颖方法 。 为了处理隐蔽性, 许多最近的工作都提议通过像素类投票, 将 2D 关键点定位为本地化, 并解决要做出估计的视野- 点( PnP) 问题, 从而实现领先性性能。 但是, 这种投票程序基于方向, 无法在无法找到方向交叉点的地方处理长细对象。 为了解决这个问题, 我们提议为预测 2D 关键点定位定位, 名为 Keypoint 远程字段( KDF) 。 以 2D 矩阵设置, 每一个 KDF 选项的每个元素都通过像素类投票来存储 2D Euclideidean 选项, 在相应的图像像素像素像素像素和特定预测的 2DG 键点之间保持本地化 2D 。 我们使用完全进化的神经网络来重新控制 KDF 。 我们提议的方法是使用远程投票计划,, 通过用 RBC 以 RDDD 平均的精确性 来计算, 和ODDD 显示性数据 显示性 。 我们的方法, 显示的性数据- DDDDDDDDDD 显示的性平比 。

0
下载
关闭预览

相关内容

专知会员服务
32+阅读 · 2021年6月12日
【干货书】数据科学家统计实战,附代码与409页pdf
专知会员服务
60+阅读 · 2020年11月6日
专知会员服务
110+阅读 · 2020年3月12日
吴恩达新书《Machine Learning Yearning》完整中文版
专知会员服务
146+阅读 · 2019年10月27日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Arxiv
27+阅读 · 2020年12月24日
DPOD: Dense 6D Pose Object Detector in RGB images
Arxiv
5+阅读 · 2019年2月28日
VIP会员
相关资讯
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Top
微信扫码咨询专知VIP会员