Generalization is the key capability of convolutional neural networks (CNNs). However, it is still quite elusive for differentiating the CNNs with good or poor generalization. It results in the barrier for providing reliable quantitative measure of generalization ability. To this end, this paper aims to clarify the generalization status of individual units in typical CNNs and quantify the generalization ability of networks using image classification task with multiple classes data. Firstly, we propose a feature quantity, role share, consisting of four discriminate statuses for a certain unit based on its contribution to generalization. The distribution of role shares across all units provides a straightforward visualization for the generalization of a network. Secondly, using only training sets, we propose a novel metric for quantifying the intrinsic generalization ability of networks. Lastly, a predictor of testing accuracy via only training accuracy of typical CNN is given. Empirical experiments using practical network model (VGG) and dataset (ImageNet) illustrate the rationality and effectiveness of our feature quantity, metric and predictor.
翻译:一般化是进化神经网络(CNNs)的关键能力。然而,在将CNN系统与良好或差强人意的通用化区分开来方面,它仍然相当难以找到。它导致难以提供可靠的一般化能力的量化衡量标准。为此,本文件旨在澄清典型CNN系统个别单位的一般化状况,并量化利用多类数据的图像分类任务对网络进行一般化的能力。首先,我们提议一个特性数量和作用份额,由特定单位基于其对一般化的贡献的四种差别状况组成。所有单位之间角色份额的分配为网络的普通化提供了直接的直观化。第二,我们仅使用成套培训,就网络固有的一般化能力提出一个新的量化指标。最后,仅通过典型CNN系统的培训精度来预测测试准确性。使用实用网络模型(VGG)和数据集(ImageNet)进行的经验性实验,说明我们特征数量、指标和预测器的合理性和有效性。