Generalization is the key capability of convolutional neural networks (CNNs). However, it is still quite elusive for differentiating the CNNs with good or poor generalization. It results in the barrier for providing reliable quantitative measure of generalization ability. To this end, this paper aims to clarify the generalization status of individual units in typical CNNs and quantify the generalization ability of networks using image classification task with multiple classes data. Firstly, we propose a feature quantity, role share, consisting of four discriminate statuses for a certain unit based on its contribution to generalization. The distribution of role shares across all units provides a straightforward visualization for the generalization of a network. Secondly, using only training sets, we propose a novel metric for quantifying the intrinsic generalization ability of networks. Lastly, a predictor of testing accuracy via only training accuracy of typical CNN is given. Empirical experiments using practical network model (VGG) and dataset (ImageNet) illustrate the rationality and effectiveness of our feature quantity, metric and predictor.


翻译:一般化是进化神经网络(CNNs)的关键能力。然而,在将CNN系统与良好或差强人意的通用化区分开来方面,它仍然相当难以找到。它导致难以提供可靠的一般化能力的量化衡量标准。为此,本文件旨在澄清典型CNN系统个别单位的一般化状况,并量化利用多类数据的图像分类任务对网络进行一般化的能力。首先,我们提议一个特性数量和作用份额,由特定单位基于其对一般化的贡献的四种差别状况组成。所有单位之间角色份额的分配为网络的普通化提供了直接的直观化。第二,我们仅使用成套培训,就网络固有的一般化能力提出一个新的量化指标。最后,仅通过典型CNN系统的培训精度来预测测试准确性。使用实用网络模型(VGG)和数据集(ImageNet)进行的经验性实验,说明我们特征数量、指标和预测器的合理性和有效性。

0
下载
关闭预览

相关内容

【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
154+阅读 · 2020年5月26日
【阿尔托大学】图神经网络,Graph Neural Networks,附60页ppt
专知会员服务
181+阅读 · 2020年4月26日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
1+阅读 · 2021年5月28日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员