Voice Activity Detection (VAD) is not easy task when the input audio signal is noisy, and it is even more complicated when the input is not even an audio recording. This is the case with Silent Speech Interfaces (SSI) where we record the movement of the articulatory organs during speech, and we aim to reconstruct the speech signal from this recording. Our SSI system synthesizes speech from ultrasonic videos of the tongue movement, and the quality of the resulting speech signals are evaluated by metrics such as the mean squared error loss function of the underlying neural network and the Mel-Cepstral Distortion (MCD) of the reconstructed speech compared to the original. Here, we first demonstrate that the amount of silence in the training data can have an influence both on the MCD evaluation metric and on the performance of the neural network model. Then, we train a convolutional neural network classifier to separate silent and speech-containing ultrasound tongue images, using a conventional VAD algorithm to create the training labels from the corresponding speech signal. In the experiments our ultrasound-based speech/silence separator achieved a classification accuracy of about 85\% and an AUC score around 86\%.
翻译:当输入音频信号噪音时,语音活动检测(VAD)不是一件容易的任务,当输入甚至不是录音时,它就更加复杂了。在静音语音接口(SSI)中,我们记录了讲话期间脉动器官的动向,我们的目标是从这一录音中重建语音信号。我们的SSI系统综合了来自舌声运动超声波视频的语音,由此产生的语音信号的质量则通过诸如以下等指标来评估:基础神经网络的平均平方差错损失功能和与原始声音相比重建后的语音的Mel-Cepstratorrition(MCD) 。在这里,我们首先展示培训数据中的沉默程度能够对MCD评价指标和神经网络模型的性能产生影响。然后,我们用传统的VAD算法来评估由此产生的语音网络语音信号的质量,从相应的语音信号中创建培训标签。在实验中,我们基于超声波/静音频的语音信号/静音频断分数可以对86进行分类,然后对86AQZZAZALA进行精确度分。