One-shot learning is proposed to make a pretrained classifier workable on a new dataset based on one labeled samples from each pattern. However, few of researchers consider whether the dataset itself supports one-shot learning. In this paper, we propose a set of definitions to explain what kind of datasets can support one-shot learning and propose the concept "absolute generalization". Based on these definitions, we proposed a method to build an absolutely generalizable classifier. The proposed method concatenates two samples as a new single sample, and converts a classification problem to an identity identification problem or a similarity metric problem. Experiments demonstrate that the proposed method is superior to baseline on one-shot learning datasets and artificial datasets.
翻译:提议进行一次性学习,使一个预先训练的分类师能够根据每个模式的标签样本在新的数据集上工作,然而,很少有研究人员考虑数据集本身是否支持一次性学习。在本文中,我们提出一套定义,以解释何种数据集可以支持一次性学习,并提出“绝对概括”的概念。根据这些定义,我们提议了一种方法,以构建一个绝对可实现的分类师。拟议方法将两个样本合并为一个新的单一样本,并将分类问题转换为身份识别问题或类似的计量问题。实验表明,拟议方法优于以一次性学习数据集和人工数据集为基准。