In this work, we consider the problem of regularization in the design of minimum mean square error (MMSE) linear filters. Using the relationship with statistical machine learning methods, using a Bayesian approach, the regularization parameter is found from the observed signals in a simple and automatic manner. The proposed approach is illustrated in system identification and beamforming examples, where the automatic regularization is shown to yield near-optimal results.
翻译:暂无翻译