Recent works have shown that selecting an optimal model architecture suited to the differential privacy setting is necessary to achieve the best possible utility for a given privacy budget using differentially private stochastic gradient descent (DP-SGD)(Tramer and Boneh 2020; Cheng et al. 2022). In light of these findings, we empirically analyse how different fairness notions, belonging to distinct classes of statistical fairness criteria (independence, separation and sufficiency), are impacted when one selects a model architecture suitable for DP-SGD, optimized for utility. Using standard datasets from ML fairness literature, we show using a rigorous experimental protocol, that by selecting the optimal model architecture for DP-SGD, the differences across groups concerning the relevant fairness metrics (demographic parity, equalized odds and predictive parity) more often decrease or are negligibly impacted, compared to the non-private baseline, for which optimal model architecture has also been selected to maximize utility. These findings challenge the understanding that differential privacy will necessarily exacerbate unfairness in deep learning models trained on biased datasets.
翻译:最近的工作表明,选择适合不同隐私环境的最佳模式架构,对于利用差异性私人随机梯度下降(DP-SGD)(Tramer和Boneh 2020年)(DP-SGD)(Tramer和Boneh 2020年);Cheng等人(2022年)为特定隐私预算实现尽可能最佳的效用是必要的。根据这些调查结果,我们从经验上分析了属于不同类别的统计公平标准(独立、分离和充足性)的不同公平理念在选择适合DP-SGD的、最适于使用的模型架构时会受到何种影响。我们利用ML公平文献的标准数据集,展示了严格的实验协议,即通过选择DP-SGD的最佳模式架构,不同群体之间在相关的公平指标(人口均等、均等概率和预测性均等)方面的差异会比非私营基线(为此也选择了最佳模式架构以最大限度地发挥效用)更经常减少或受到明显的影响。这些发现,不同隐私差异必然会加剧在有偏向的数据集培训的深层学习模型中的不公平性。