Deep neural architectures have profound impact on achieved performance in many of today's AI tasks, yet, their design still heavily relies on human prior knowledge and experience. Neural architecture search (NAS) together with hyperparameter optimization (HO) helps to reduce this dependence. However, state of the art NAS and HO rapidly become infeasible with increasing amount of data being stored in a distributed fashion, typically violating data privacy regulations such as GDPR and CCPA. As a remedy, we introduce FEATHERS - $\textbf{FE}$derated $\textbf{A}$rchi$\textbf{T}$ecture and $\textbf{H}$yp$\textbf{ER}$parameter $\textbf{S}$earch, a method that not only optimizes both neural architectures and optimization-related hyperparameters jointly in distributed data settings, but further adheres to data privacy through the use of differential privacy (DP). We show that FEATHERS efficiently optimizes architectural and optimization-related hyperparameters alike, while demonstrating convergence on classification tasks at no detriment to model performance when complying with privacy constraints.


翻译:深度神经网络对当今许多AI任务的性能产生了深远影响,然而,它们的设计仍然严重依赖于先前的人类知识和经验。神经体系结构搜索(NAS)与超参数优化(HO)有助于减少这种依赖。然而,随着分布式数据存储量的增加,这两种领先的NAS和HO方法很快变得不可行,通常违反诸如GDPR和CCPA等数据隐私法规。为此,我们引入了FEATHERS – $\textbf{FE}$derated $\textbf{A}$rchi$\textbf{T}$ecture和$\textbf{H}$yp$\textbf{ER}$parameter$\textbf{S}$earch (分布式架构与超参数搜索),这种方法不仅可以在分布式数据设置中同时优化神经架构和与优化相关的超参数,而且还通过差分隐私(DP)的使用遵守数据隐私。我们展示FEATHERS可以高效地优化体系结构和与优化相关的超参数,在遵守隐私约束的情况下,在分类任务上证明收敛性,而不会对模型性能造成任何损害。

0
下载
关闭预览

相关内容

在贝叶斯统计中,超参数是先验分布的参数; 该术语用于将它们与所分析的基础系统的模型参数区分开。
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
专知会员服务
159+阅读 · 2020年1月16日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月16日
Arxiv
0+阅读 · 2023年5月14日
Arxiv
12+阅读 · 2022年11月21日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
Arxiv
23+阅读 · 2018年10月1日
Arxiv
20+阅读 · 2018年1月17日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
专知会员服务
159+阅读 · 2020年1月16日
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员