To achieve excellent performance with modern neural networks, having the right network architecture is important. Neural Architecture Search (NAS) concerns the automatic discovery of task-specific network architectures. Modern NAS approaches leverage supernetworks whose subnetworks encode candidate neural network architectures. These subnetworks can be trained simultaneously, removing the need to train each network from scratch, thereby increasing the efficiency of NAS. A recent method called Neural Architecture Transfer (NAT) further improves the efficiency of NAS for computer vision tasks by using a multi-objective evolutionary algorithm to find high-quality subnetworks of a supernetwork pretrained on ImageNet. Building upon NAT, we introduce ENCAS - Evolutionary Neural Cascade Search. ENCAS can be used to search over multiple pretrained supernetworks to achieve a trade-off front of cascades of different neural network architectures, maximizing accuracy while minimizing FLOPs count. We test ENCAS on common computer vision benchmarks (CIFAR-10, CIFAR-100, ImageNet) and achieve Pareto dominance over previous state-of-the-art NAS models up to 1.5 GFLOPs. Additionally, applying ENCAS to a pool of 518 publicly available ImageNet classifiers leads to Pareto dominance in all computation regimes and to increasing the maximum accuracy from 88.6% to 89.0%, accompanied by an 18\% decrease in computation effort from 362 to 296 GFLOPs. Our code is available at https://github.com/AwesomeLemon/ENCAS


翻译:为了在现代神经网络中取得极佳的绩效,拥有正确的网络架构十分重要。神经架构搜索(NAS)涉及自动发现特定任务网络架构。现代NAS 方法利用了其子网络编码候选神经网络架构的超级网络。这些子网络可以同时接受培训,从零开始就不需要对每个网络进行培训,从而提高NAS的效率。最近采用的一种名为神经架构传输(NAT)的方法,通过使用多目标进化算法,找到在图像网络上预先训练的超级网络的高质量子网络。在NAT上建立,我们引入ENCAS - 进化性神经轨迹搜索系统。ENCAS可以使用经过预先培训的多个超级网络进行搜索,以实现不同神经网络架构的连锁贸易前端,从而提高准确性,同时尽量减少LOPs的数量。我们用通用的计算机愿景基准测试ENCAS(CIFAR-10,CIFAR-100,图像网络网),并且从以前的NAS-S-进化的高级网络模型到1.5 GFLOPs 的精确度,从我们所有的ASASA18级系统到现有的ASAA 和最高级系统。

0
下载
关闭预览

相关内容

多标签学习的新趋势(2020 Survey)
专知会员服务
41+阅读 · 2020年12月6日
专知会员服务
60+阅读 · 2020年3月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年6月15日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
Arxiv
37+阅读 · 2021年2月10日
Arxiv
38+阅读 · 2020年12月2日
Arxiv
13+阅读 · 2019年11月14日
VIP会员
相关VIP内容
多标签学习的新趋势(2020 Survey)
专知会员服务
41+阅读 · 2020年12月6日
专知会员服务
60+阅读 · 2020年3月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员