Temporal/spatial receptive fields of models play an important role in sequential/spatial tasks. Large receptive fields facilitate long-term relations, while small receptive fields help to capture the local details. Existing methods construct models with hand-designed receptive fields in layers. Can we effectively search for receptive field combinations to replace hand-designed patterns? To answer this question, we propose to find better receptive field combinations through a global-to-local search scheme. Our search scheme exploits both global search to find the coarse combinations and local search to get the refined receptive field combinations further. The global search finds possible coarse combinations other than human-designed patterns. On top of the global search, we propose an expectation-guided iterative local search scheme to refine combinations effectively. Our RF-Next models, plugging receptive field search to various models, boost the performance on many tasks, e.g., temporal action segmentation, object detection, instance segmentation, and speech synthesis. The source code is publicly available on http://mmcheng.net/rfnext.
翻译:时空/ 空间可接受模型领域在顺序/ 空间任务中起着重要作用。 大型可接受域有助于长期关系, 而小可接受域有助于捕捉本地细节。 现有方法在层次上用手工设计的可接受域构建模型。 我们能否有效地寻找可接受域组合来取代手工设计的模式? 为了回答这个问题, 我们提议通过一个全球到地方的搜索计划寻找更方便的可接受域组合。 我们的搜索计划利用全球搜索寻找粗略组合和本地搜索来进一步获取精细的可接受域组合。 全球搜索除了人类设计模式外,还发现了可能的粗略组合。 除了全球搜索之外,我们提议了一种预期的可导迭代本地搜索计划,以有效地完善组合。 我们的RF- Next 模型, 将可接受域搜索插入各种模型, 推动许多任务的性能, 例如: 时间动作分割、 对象探测、 实例分割和语音合成。 源代码公布在 http:// mmcheng. net/rfnext 上。