This paper tackles the low-efficiency flaw of the vision transformer caused by the high computational/space complexity in Multi-Head Self-Attention (MHSA). To this end, we propose the Hierarchical MHSA (H-MHSA), whose representation is computed in a hierarchical manner. Specifically, we first divide the input image into patches as commonly done, and each patch is viewed as a token. Then, the proposed H-MHSA learns token relationships within local patches, serving as local relationship modeling. Then, the small patches are merged into larger ones, and H-MHSA models the global dependencies for the small number of the merged tokens. At last, the local and global attentive features are aggregated to obtain features with powerful representation capacity. Since we only calculate attention for a limited number of tokens at each step, the computational load is reduced dramatically. Hence, H-MHSA can efficiently model global relationships among tokens without sacrificing fine-grained information. With the H-MHSA module incorporated, we build a family of Hierarchical-Attention-based Transformer Networks, namely HAT-Net. To demonstrate the superiority of HAT-Net in scene understanding, we conduct extensive experiments on fundamental vision tasks, including image classification, semantic segmentation, object detection, and instance segmentation. Therefore, HAT-Net provides a new perspective for the vision transformer. Code and pretrained models are available at https://github.com/yun-liu/HAT-Net.


翻译:本文解决了多负责人自我保护(MHSA)中高计算/空间复杂性造成的视觉变压器低效率缺陷。 为此,我们提议采用等级化的MHSA(H-MHSA)系统(H-MHSA)系统(H-MHSA)系统(H-MHSA)系统,它的代表性以等级化的方式计算。具体地说,我们首先将输入图像分为通常的补丁,然后将每个补丁视为一种象征。然后,拟议的H-MHSA系统在当地补丁中学习象征性关系,作为当地关系模型。然后,将小补丁合并成较大的补丁,H-MHSA(HH-HMSA)系统为少量合并标牌的全球依赖关系模型。最后,对本地和全球关注特性进行汇总,以获得强大的代表能力。由于我们只计算有限的代号数,计算计算到每个补丁的计算负荷。 因此,H-MHHHHHSAA系统可以有效地模拟全球代号关系,而不牺牲精细的信息。 H-MHSAAAT模块的整合,我们在HERI-AA-A-ATI-ATI-ATI-O-O-O-OD-OD-SOL-S-SOL-S-SOL-SOLVOLT-SOL-S-S-S-SOL-S-S-S-SOL AS-S-S-S-S-S-S-S-S-S-SOL-S-SOLVOLVOLVOLVOL-SD-SOLVOLVOLVOLVOLVOL-S-S-S-S-S-S-S-S-S-SY AS-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-SOL-S-S-S-S-S-S-SOL-SOL-SOLVOLVOL-SUD-SUD-S-S-L-S-S-SOL-I-S-S-S-S-S-S-S-S-S-S-IM-SUL-S-S-S-S-S-S-S-S-S

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
52+阅读 · 2020年11月3日
专知会员服务
123+阅读 · 2020年9月8日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
58+阅读 · 2021年11月15日
Arxiv
17+阅读 · 2021年3月29日
Hierarchical Graph Capsule Network
Arxiv
20+阅读 · 2020年12月16日
Arxiv
13+阅读 · 2019年11月14日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
52+阅读 · 2020年11月3日
专知会员服务
123+阅读 · 2020年9月8日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员