Directed acyclic graph (DAG) learning is a central task in structure discovery and causal inference. Although the field has witnessed remarkable advances over the past few years, it remains statistically and computationally challenging to learn a single (point estimate) DAG from data, let alone provide uncertainty quantification. We address the difficult task of quantifying graph uncertainty by developing a Bayesian variational inference framework based on novel, provably valid distributions that have support directly on the space of sparse DAGs. These distributions, which we use to define our prior and variational posterior, are induced by a projection operation that maps an arbitrary continuous distribution onto the space of sparse weighted acyclic adjacency matrices. While this projection is combinatorial, it can be solved efficiently using recent continuous reformulations of acyclicity constraints. We empirically demonstrate that our method, ProDAG, can outperform state-of-the-art alternatives in both accuracy and uncertainty quantification.


翻译:有向无环图(DAG)学习是结构发现与因果推断中的核心任务。尽管该领域在过去几年取得了显著进展,但从数据中学习单一(点估计)DAG仍面临统计与计算上的挑战,更遑论提供不确定性量化。我们通过构建基于新型可证明有效分布的贝叶斯变分推断框架,解决了图结构不确定性量化的难题——该分布直接定义在稀疏DAG空间上。我们将该分布用于定义先验分布与变分后验分布,其通过投影操作导出:该操作将任意连续分布映射至稀疏加权无环邻接矩阵空间。虽然该投影属于组合优化问题,但借助近期对无环约束的连续化重构方法可高效求解。实验表明,我们的方法ProDAG在准确性与不确定性量化方面均优于当前最先进方法。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
35+阅读 · 2021年1月27日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员